
上篇文章中我们通过克隆已有虚拟机并修改相应的参数配置将hadoop分布式集群搭建完成,接下来我们启动Hadoop分布式集群。
1、ssh免密登录
首先打开虚拟机软件VMware然后开启master、slave1、slave2三个虚拟机。
一般搭建hadoop分布式集群时需要配置集群中各个节点间的ssh免密登录,然后才可以启动hadoop分布式集群。我们在master虚拟机终端中输入命令ssh slave1 , 此时出现如下提示,然后输入yes
注意输入exit命令退出slave2的登录。接下来我们就可以远程登录到slave2了。在登录的过程中我们也无需输入密码。小伙伴们会不会有疑问,我们什么时候配置过ssh免密登录?
其实我们还真的配置了,由于现在集群中的三个虚拟机最终的源头都是由伪分布集群的虚拟机复制过来的,在这过程中也把.ssh目录下的authorized_keys这个文件复制过来了。
这个文件的作用之前提前过,简单来说就是认证登录ssh服务器的客户机,只要客户机的公钥在这里面就可以不用密码登录ssh服务器了。下图为slave1节点hduser用户主目录下的.ssh目录大家可以看到authorized_keys目录已经存在了。
2、格式化HDFS
由于我们集群中的虚拟机都是由伪分布集群虚拟机克隆出来的所以会有HDFS相关的目录,而且目录中还有数据,为了不影响格式化操作我们需要将这些目录中的数据都删除,然后再执行格式化。
输入命令rm -rf tmp/dfs/ 删除dfs目录
首先通过ssh slave1登录slave1然后执行rm -rf tmp/dfs/删除slave1 中的dfs目录。记得exit退出slave1的登录。
删除方式与删除slave1虚拟机HDFS目录的方式一致,这里不再赘述,具体操作可参照下图。一定记得最后执行exit退出slave2的登录,否则极易造成误操作。
2.4格式化HDFS
在删除各个节点HDFS文件后我们开始格式化HDFS。在master终端输入命令 hadoop namenode –format然后回车执行。执行完成后会看到下图标注的那句话,表明格式化成功。
3、启动hadoop
格式化HDFS结束之后我们就可以启动hadoop分布式集群了。启动可以可以分步执行当然hadoop也给我们提供了更简单的脚本通过一个命令自动启动所有模块。这里需要指出的是不管分步执行启动过程还是通过脚本自动启动,模块的启动顺序都是一致的即先启动HDFS模块然后再启动YARN模块,停止的过程则是先停止YARN模块再停HDFS模块。下面我们来分别操作演示一下。
3.1启动HDFS进程
启动HDFS模块使用命令start-dfs.sh,启动过程如下图所示。需要注意的是我们启动或者停止的命令都是只需在master节点终端中操作即可,底层hadoop会自动启动其他节点的相关进程。启动完成后可以通过jps命令查看启动了哪些进程,这在下图也有展示。我们可以看到HDFS模块在master上有NameNode与
SecondaryNameNode进程。
HDFS模块在slave1节点启动进程DataNode
HDFS模块在slave2节点启动进程也是DataNode。
3.2启动YARN进程
启动YARN模块的命令为start-yarn.sh,启动过程如下图所示
master节点启动的进程如下图所示,比启动HDFS时多了ResourceManager进程。
在slave1与slave2节点上多了NodeManager进程
3.2全部启动(包括YARN、HDFS)
hadoop还提供了一个可以自动启动HDFS与YARN的脚本命令start-all.sh和停止HDFS与YARN的命令stop-all.sh。在使用start-all.sh命令前我们需要先停止所有进程否则会报错。在终端输入命令stop-all.sh停止所有进程过程如下图所示。此时通过jps命令查看master所有hadoop相关进程已经关闭
查看slave1 slave2节点同样的是hadoop进程消失,说明命令执行成功。
下面演示同时启动HDFS 、YARN,命令行执行命令start-all.sh,并使用jps查看进程,如下面三张图所示,启动成功。
小伙伴们今天的内容到这里就结束了,你Get到了没。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29