
上一篇文章中,我们理清楚了python的time库以及datetime库中各种时间对象的处理方法,以及相互之间的转化方法。
我们发现,time库以及datetime库中,确实存在名字相同,但是调用方法与所属类完全不一样的情况,这也是造成使用过程中各种混淆的原因。
今天我们把Pandas库中处理时间的各种函数与方法也加进来讨论,当然,由于Pandas中处理时间的方法和类太多太强大,我们仅仅是对其中探讨Pandas其中部分,特别是其中与time库、datetime库有关联且又容易混淆的相关知识。
(一) 此Timestamp非彼Timestamp
相信在读过前面一篇文章的同学,对time库中的unix时间戳还有印象,但是Pandas中的Timestamp对象和unix时间戳格式完全不同。
Pandas中的Timestamp对象可以说是Pandas中时间序列对象的“细胞”,如果我们有datetime64[ns]型Series对象如下:
你会发现当你提取Series第一个元素出来,返回来的就是一个Timestamp对象。当然,我们也可以自己创建一个Timestamp对象:
从上面的代码你会发现,你可以将unix时间戳、字符串型日期、datetime库中datetime.datetime通过pd.Timestamp()方法直接转化为Timestamp对象。
反过来呢?如果想将把Timestamp对象转化为unix时间戳,可以使用pd.Timestamp.timestamp()方法:
(二) 生成时间序列
Pandas作为处理多维数组的“神器”,本篇文章讲的当然是处理时间序列的方法。其中,Pandas中生成时间序列的方法不少,最常用的方法是pd.date_range(),我们看一下其使用方法:
l pd.date_range(start, end, freq) 生成一个时间段
n start:开始时间,参数可以是datetime库中的datetime对象,也可以是字符串。
n end:结束时间,参数可以是datetime库中的datetime对象,也可以是字符串。
n freq:时间频率,'Y'表示年,'M’表示月,'D’表示天,'H’表示小时,'Min’表示分钟
注意,这里开始时间和结束时间的参数指向的对象,是可以是datetime.datetime对象:
当然,这里的开始时间除了可以使用datetime.datetime实例以外(这里注意,是使用的datetime库中的类,而不是Pandas库),也可以用字符串来表示。
以start_time为2019年7月17日为例,start_time也可以是字符串'20190717'、'2019-07-17'、'2019/07/17'...
从上面可以看到,pd.date_range()方法生成的是长度为200、数据类型为datetime的DatetimeIndex对象,时间频率是天。
也就是说,2019年7月17日到2020年2月1日,算上始末的日期,一共200天。这是因为默认的频率是每天,freq='D'。 也可以通过改变时间频率,详情参考上面的使用方法添加修改freq参数即可。
如果我们想要2019年7月17日为起始,按照每天的时间频率,生成长度为200的DataIndex对象,可以这样写:
相应地,如果想要以2020年2月1日为结束日,按照每天的时间频率,生成长度为200的DataIndex对象,可以这样写:
(三) .to_datetime()方法
当然,上面的方法生成的是DatetimeIindex对象,可以通过pd.Series()方法转化为Series对象:
但是对于不规范的日期字符串Series,需要使用pd.to_datetime()方法来对其进行转换,比如:
(四) DateOffset类
datetime库中有timedelta类作为日期的增减,Pandas中也有专门的DateOffset类作为时间间隔对象,可以直接作用在上面的datetime型Series对象中。
其使用方法和datetime.timedelta类相似,但是要注意的是里面的参数名最后都加了's'。
datetime型Series对象可以直接使用DataOfffset对象进行日期加减:
也可以作用在DatetimeIndex对象中:
(五) 时间序列日期格式化
要对datetime型的Series对象进行日期格式转换,可以通过Series实例的方法.dt.strftime(),其格式化字符串依然可以参照datetime库中的格式化字符串对照表:
要对datetime型的Series对象进行日期格式转换,可以通过Series实例的方法.dt.strftime(),其格式化字符串依然可以参照文章开头的datetime库中的格式化字符串对照表:
但是如果留心的话可以发现,转化之后的数据类型,已经从datetime型变成object类,也就是字符串。
如果把字符串时间date_03重新转化为datetime型Series,用上面提到的pd.to_datetime()方法即可:
(六) 结后语
time库和datetime库以及Pandas中各种对象处理时间的方法,虽然错综复杂又相互关联,但是其实在使用方面有所侧重和不同。
time库以及datetime库的对象,一般用在程序设计的中涉及到时间的问题,比如爬虫的时候在获得的不规则时间时碰到的格式转换问题,会使用很多。
Pandas中各种与时间相关的类非常多,方法非常丰富,涉及到时间处理的各个方面,主要用作序列数据的处理方面,这和time库与datetime库对单独某些日期数据处理不同。
就数据分析工作而言,对时间序列数据处理的时候Pandas用得非常多,以至于很多人几乎都忘记time库与datetime库的存在。总体而言,对于数据分析初学者而言,可以把Pandas作为重点学习方面,但是time库和datetime库作为Python标准库,其时间类的基本使用方法的学习是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30