京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Susan Malaika编译 | CDA数据分析师
了解AutoAI如何实现数据准备,模型开发,功能工程和超参数优化的自动化。
近年来,数据驱动的决策已成为企业成功的关键。使用技术进行数据驱动的实践有很多好处,包括优化生产和制造,减少客户流失,减少数据冗余,增加利润和创造竞争优势。因此,随着组织采用以数据为依据的决策方法,数据科学已变得流行起来。数据科学家需要广泛的技能,包括数学和统计,机器学习和人工智能(AI),数据库和云计算以及数据可视化。但是,很难招募到足够的数据科学家,尤其是具有足够领域知识的专家,例如银行,医疗保健,人力资源,制造业和电信公司,对于要执行的任务和要做出的决定的岗位往往是人手不够的。与此同时,数据科学正日益成为一种素养,许多工作角色(包括员工没有很强的编码技能的角色)都需要了解数据科学技术。
因此,在与开发新工具以提高数据科学家工作效率的同时,也出现了一些技术开发,这些开发的重点是创建软件,使数据科学工作流程中的任务实现自动化,例如Google的AutoML,H2O,DataRobot,以及Auto-sklearn和TPOT等开源库。其中许多系统都基于scikit-learn Python机器学习库。它们是人工智能的例子,因为人工智能技术正被用于构建人工智能解决方案。$IBM^®$为人工智能技术生产了最先进的人工智能,并以AutoAI的形式将其整合到其产品组合中。
AutoAI是IBM Cloud Pak for Data的标准配置,可在混合多云环境中使用和扩展。AutoAI自动执行数据准备,模型开发,特征工程和超参数优化。AutoAI AI生命周期管理在入门和探索要问的问题时提供了很大的帮助。然后,它支持后续实验,模型修改和调整步骤。通过IBM Watson™Studio,也可以在不使用Cloud Pak for Data的情况下使用AutoAI。
AutoAI是人工智能一个令人兴奋的例子。AutoAI工具会自动分析您的数据并生成针对预测建模问题定制的候选模型方案。随着AutoAI算法了解有关您的数据集的更多信息,会发现最适合您的问题的数据转换,评估器算法和参数设置,这些模型方案会随着时间的推移而创建。结果会显示在一个排行榜上,显示自动生成的模型方案,并根据问题优化目标进行排序,从而鼓励您进行进一步的实验。
数据科学通常涉及提出更好的问题,例如,确定适当的属性,通过探索这些属性是预测结果。这意味着需要构建许多不同的模型,并且需要选择不同的特征并应用不同的超参数去优化模型。AutoAI中的选项可以通过加快人工智能流程或提供人员参与点来探索更好的问题。
整个AutoAI流程可在数分钟内自动完成(取决于数据量和其他考虑因素),而无需人工干预,创建出基础解决方案并使之适合初学者。然而,这个领域的专家可以轻松地与AutoAI进行交互,来将他们的知识整合到自动化方案中,以改进生成的模型并根据其特定需求进行定制。
专家可以在AutoAI流程中手动指定他们自己的偏好以使其符合该领域的知识要求,下面是几个可供选择的人机交互的点的示例:
有人声称,由人工智能构建的人工智能比人类更出色。Dakuo Wang博士及其团队最近进行的一项定性研究有许多数据科学家参与。一些参与者被要求使用IBM AutoAI构建模型。其他参与者在Jupyter Notebook环境中使用Python库操作完成相同的任务。该研究表明,与AutoAI一起工作的数据科学家可以显著更好地构建模型(ROC- AUC得分为0.92对0.90),更快(4.4分钟对15分钟),人为错误更少(100%对46.7%的参与者在指定的时间内成功完成了建模任务)。这项研究还揭示了数据科学家与AutoAI系统的互动的态度, 受访者认为,数据科学家与自动化AI系统之间存在协作关系,而不是竞争关系。
AutoAI的设计目的是在加快实验过程的同时,融入人类的反馈并增强数据科学实践。这使得没有较强编码技能的个人可以探索不同的选项,确定更好的问题,选择最合适的模型,然后将模型转移到项目部署中。
AutoAI的仪表板促进了人机交互,而不是取代人机交互,从而使数据科学家和领域专家能够做出明智的选择并为模型创建做出贡献。在IBM AutoAI系统的以下图形界面中,您可以看到如何构建八个模型(顶部可视化)以及根据所选度量(ROC-AUC)对模型进行排名的排行榜(底部列表)。在数十种算法中,AutoAI选择了逻辑回归和随机森林这两种算法,并为每种算法生成了四个模型。在全部使用逻辑回归算法的四个模型中,模型P2包括一个超参数优化步骤,该步骤将其与P1相区别。模型P3包括特征工程步骤,而P4包括第二个HPO步骤。
IBM研究人员将这种与AI系统一起工作的模式称为“Human-AI Collaboration”,即人与人工智能系统在特定任务上作为合作伙伴一起工作,在这种协作中,双方共同贡献出互补的不可或缺的能力。
AutoAI是IBM Cloud Pak for Data的标准配置,可在混合多云环境中使用和扩展。AutoAI有很多好处,特别是在支持人们更好地理解和预测其特定业务或专业方面。这些好处包括:
该技术正在迅速变化,因此需要继续关注迁移学习,业务限制等方面的进一步发展。
Watson Studio Cloud中的AutoAI现已上市。作为IBM Cloud Pak for Data一部分的AutoAI将于今年晚些时候上市。
Dakuo Wang是位于马萨诸塞州剑桥的IBM Research AI的一名研究科学家。他的研究在人机交互(HCI)和人工智能(AI)之间的交集。现在,他领导着一组研究人员,工程师和设计师来为IBM AutoAI进行研究和设计用户体验,这是一种使端到端(一端输入原始数据,一端输出结果,只关心输入和输出,中间步骤全不管的方法)机器学习模型自动化的解决方案。通过研究用户如何与各种AI系统(例如AutoAI,聊天机器人和临床决策支持系统(CDSS))一起协作,他提出了“人与AI协作”作为研究和设计与人类协作作的AI系统的新框架。加入IBM Research之前,Dakuo Wang获得了博士学位。加州大学欧文分校的信息和计算机科学硕士和硕士学位(MS )获得巴黎中央电子信息系统信息系统学位,并获得北京工业大学计算机科学学士学位。他曾在法国,中国和美国担任工程师,设计师和研究员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27