
![]()
作者 | GEORGIA WILSON
编译 | CDA数据分析师
Watson是IBM的人工智能(AI)服务,应用程序和工具套件。Watson旨在帮助企业以新的方式释放数据的价值,并消除员工的重复任务,从而将重点转移到高价值的工作上。这不仅使公司能够预测和确定业务成果,以便重新考虑实践和工作流程。
IBM Watson AI服务的一部分是机器学习。沃森软件的开发旨在帮助数据科学家和开发人员将AI集成到公司应用程序中。Watson Machine Learning使跨职能团队能够快速,轻松地部署,监视和优化模型。
巴斯夫营养与健康 -化学组的分工巴斯夫 -与IBM在2019年初合作作为其更为广阔的视野,使数字化业务的重要组成部分的一部分。
巴斯夫要求其产品具有较高的交付性能,并在供应商,制造商,物流合作伙伴和分销中心之间进行端到端的协调,并具有管理功能失调的库存的能力。巴斯夫与IBM合作,探索了AI和机器学习如何创建更明智的库存决策并确保产品在正确的时间到达正确的位置。
借助IBM Watson的认知智能,巴斯夫和IBM首先建立了概念验证(PoC),以评估如何利用AI和机器学习来构建更强大的Replenishment Advisor工具。评估之后,IBM Watson和BASF基于交易订单数据和公司ERP系统中的未来订单以及销售模式报告,数量策略,库存水平和运输时间设计了一个模型。使用开源机器学习,构建了定制解决方案来预测未来的补货需求。
在仅完成10个培训周期后,该软件就提供了准确的预警,以补充库存,并提供了最佳的中断时间。
巴斯夫营养与健康部供应链运营卓越与数字化主管Bernd Lohe博士说:“ IBM Cloud和Watson AI服务使我们能够立即访问内置了IBM经验的各种机器学习模型。”。“这意味着我们可以开始分析数据并立即培训补给顾问。该解决方案还包括数据可视化。在培训阶段,这有助于我们的计划人员理解系统建议并执行有效的机器学习培训循环。Replenishment Advisor中内置了集成的聊天机器人功能,使员工可以使用自然语言与解决方案进行交互。基于我们成功的PoC,无论是在强大的认知功能还是在易用性方面,我们都对IBM Watson产品组合感到非常满意。”
KIST Europe是韩国科学技术学院(KIST)的第一个海外分支机构,旨在为韩国和欧洲领先的研究机构和行业合作伙伴建立开放的创新平台。KIST的关键研究领域之一是“工业4.0”的概念,它是技术的发展,从人工控制的集中式系统到可以独立操作的分散式机器。
为了测试并证明“工业4.0”可以为制造业增加的价值,KIST Europe与SmartFactory和IBM Watson合作改善了重量测量,这是质量管理不可或缺的一部分。“ SmartFactory背后的技术令人印象深刻,但制造商对技术本身并不感兴趣。为了证明“工业4.0”方法的价值,我们需要展示工厂如何解决现实世界中的制造问题,” KIST欧洲AI实施业务主管MarcoHüster说。
在制造中,与预期重量的最小偏差可能表示组件,产品或生产线机械出现故障。结果,这三家公司将现有的SmartFactory技术,数据科学解决方案和1000个现实测量数据集与机器学习技术相结合,以产生一个可以以98.1%的可靠测量精度进行预测的模型。
“体重测量是一个非常简单的例子,但是它证明了将AI和智能工厂技术相集成可以对生产线效率和质量管理产生真正的影响,” KIST欧洲集团负责人Hongwoon Hwang博士评论道。“在IBM的帮助下,我们向行业展示了分散式AI如何能够帮助提供更大的灵活性,优化流程管理并预测生产资源的性能。在我们继续迈向第四次工业革命的过程中,这些功能将帮助先驱制造商改变行业并为他们自己和他们的客户创造新的价值。”
亚马逊网络服务(AWS)是亚马逊面向企业的综合云平台。AWS的一项服务是机器学习(Machine Learning),客户可以在其中构建,训练和部署模型,应用和集成经过预先训练的AI应用程序(例如建议和预测),为自定义算法利用灵活的框架和广泛的计算选项以及深层次利用学习技术,分析和安全性。
最近几个月,Convoy与AWS合作,利用其机器学习服务开发了一种解决方案,以使卡车运输更加高效和环境友好。
卡车司机每年记录的40%的里程是用空卡车完成的。问题的一部分是行业基础设施与传统方法的结合。使用AI Convoy希望在AWS的帮助下实现流程自动化。
通过使用Amazon SageMaker,Convoy开发了一种机器学习模型,可以分析数百万个运输工作和卡车司机的可用性,从而为您推荐具有成本效益和时间效率的匹配产品。除此之外,该模型还将建议回程匹配,这将减少空卡车完成的行驶里程数,进而对环境产生积极影响。
“随着我们与更多的托运人和承运人合作,我们将更好地了解特定航线上的可用容量和需求量,” Convoy数据科学主管Casey Olives说。“能够了解整个网络的上下文,这将使我们能够提高利用率和成本效率,使承运人和托运人双方受益。”
TuSimple ,世界上最大的自驾车卡车公司之一,已与AWS合作开发自动驾驶汽车。TuSimple车辆主要是在AWS上使用Apache MXNet深度学习框架构建的,内置了服务器,服务器上最多可装载100个不同的AI模块。这些模块可以区分道路上的汽车类型和卡车周围其他物体的速度,从而提供来自摄像头,LiDAR和雷达设备的稳定数据流,以构建实时的道路3D模型,并随着卡车的移动不断更新。成功完成交付后,在完成安全测试和模拟以确保其行为正常之后,结果将更新到每个卡车服务器上的模块。借助AWS强大的计算能力,此过程将耗时数小时,而不是数周。
目前,TuSimple的卡车处于“ 4级”自动驾驶汽车等级,装满拖车时在65 mph时的准确性为5cm。到2020年,TuSimple的总裁兼首席技术官侯小迪希望从车辆上拆除人为的“故障保险装置”。
随着全球公司在供应链空间中利用新技术的激动人心的未来的开始,机器学习将在未来几年的公司运营中发挥更大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15