京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 读芯术来源 | AI_Discovery(ID)
人生苦短,我学Python;
人生漫漫,Python是岸!
二十年前的全民学英语风潮,如今变成了“学 Python”。
当代人的知识焦虑中,这门叫 Python 的语言逐渐成为主流。朋友圈、QQ空间随便一刷就出现的「Python 训练营」广告,
“每天半小时学习编程,0基础入门。”
“会Python的人,工作都不会太差。追上同龄人,就现在!”
……
诸如此类的。
此外,知乎、贴吧等社区的热议非凡,总给人一种全民学 Python 的错觉。
是错觉吗?
好像也不是,毕竟连地产大亨潘石屹都把学习 Python 当作自己的“人生礼物”,
浙江都已经把 Python 纳入信息技术高考科目了,这股风潮似乎有愈演愈烈之势。
随着人工智能和机器学习的发展,Python大火,情理之中。
但是你知道吗,Python其实并不年轻,早在1991年,它就诞生了。
最让人难以置信的是,Python实际上出自一个人之手——开发者荷兰程序员Guido van Rossum。
众所周知,大多数编程语言都由大型公司雇佣大量专业人员集体研发而成。在这种意义上,Python是独一无二的!
当然,开发者Russum并没有独自开发和完善Python的所有组件。这是一个开源项目,数千人曾在其中协助开发。尽管Python在数年的时间内不断演化,但人们选择它的目的始终相似。
开发Python的主要目的是帮助程序员编写清晰、有逻辑的程序,满足各种大小的项目的需求。这也是为什么Python如此受开发者欢迎。Python功能全面,可用于网页开发、游戏开发、配置服务器、执行科学计算和数据分析。
近年来,Python的普及率在众多编程语言中快速增长。由Stack Overflow发起的有关各个编程语言使用率的调查表明,Python的使用率不断攀升,已经超过众多竞争者登上榜首。
你知道吗?Python正和Netflix强强联合。
所以,这些年到底发生了什么?Python的热度怎么涨得这么快?
现在我来介绍那些促成了当今Python语言盛世的技术。
人工智能和机器学习的发展程度已远超出科幻小说。
正如ChrisDuffey在SuperhumanInnovation一书中所言,
“限制人工智能的只有人类的想象力。”
当今高密度数据不断扩张,人工智能和机器学习承担起过去人们似乎无法完成的任务。所有的科技巨头(Facebook,Microsoft,Google和Amazon)都在投入大量时间和精力开发人工智能和机器学习领域,并做出了贡献。
研究表明,人工智能和机器学习从业者更喜欢使用Python,因为它编写简单、便于阅读,使技术员们不再为复杂的编程语言结构所困扰。
全世界充斥着数据。席卷全球的数据狂风的规模也日渐扩张。现在我们的一举一动都能生成数据。所有行为,从社交网站上的图片和评论,到网页浏览记录和网上购物行为,再到股票价格和天气预报,都会被记录在案。
预计到2020年,人们每天将产出44字节大小的数据,这个数字比宇宙中可观测恒星总数多40倍。但是不经收集、整理或分析的数据,就是对社会利益无用的数据。因此,我们需要数据科学。
Python在数据科学运转周期中扮演者举足轻重的角色。如今的Python社区成功开发出诸如Numpy,Pandas, sci-kit-learn等优秀的数据分析库,用于处理数据。Python丰富的功能,让它能胜任收集数据、清理数据集、提取重要特征、构建机器学习模型和生成可视化数据图表等任务。
“数据科学家的工作只会越来越时髦”,经济学家兼Indeed求职网报告作者AndrewFlowers说。“越来越多的用人单位开始雇佣数据科学家”。
Github每年都会开展一次调研。2018年,来自TheState of the Octoverse的报告向我们展示了近年来Python的使用量是如何上升的。
Python现已深入Spotify,Netflix, Quora, Facebook和Google这类大公司的开发活动中。Google一直支持Python编程,现在它已经是官方的服务器端语言了。他们还把许多原本用Bash或者Perl编写的程序转写成了Python。
Google研究总监PeterNorvig说,
“Python始终是Google系统的重要部分,在系统扩张演化之后还是如此。现在数十个Google工程师都在使用Python,我们需要更多掌握这一编程语言的人才。”
Spotify和Netflix同样十分依赖Python,这两家公司借此分析服务器端处理的海量数据。分析数百万订阅者的信息,有助于针对每位用户产生更好的推送内容,后者也是Spotify和Netflix能坐拥数十亿收入的原因。
Python早已不是什么新生编程语言,它经过了多年的发展,始终领先,也将在未来保持着优势地位。这便是Python世界,IT行业正身在其中。
多花一些时间学习Python编程,未来的你定将收获颇丰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06