京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 读芯术来源 | AI_Discovery(ID)
人生苦短,我学Python;
人生漫漫,Python是岸!
二十年前的全民学英语风潮,如今变成了“学 Python”。
当代人的知识焦虑中,这门叫 Python 的语言逐渐成为主流。朋友圈、QQ空间随便一刷就出现的「Python 训练营」广告,
“每天半小时学习编程,0基础入门。”
“会Python的人,工作都不会太差。追上同龄人,就现在!”
……
诸如此类的。
此外,知乎、贴吧等社区的热议非凡,总给人一种全民学 Python 的错觉。
是错觉吗?
好像也不是,毕竟连地产大亨潘石屹都把学习 Python 当作自己的“人生礼物”,
浙江都已经把 Python 纳入信息技术高考科目了,这股风潮似乎有愈演愈烈之势。
随着人工智能和机器学习的发展,Python大火,情理之中。
但是你知道吗,Python其实并不年轻,早在1991年,它就诞生了。
最让人难以置信的是,Python实际上出自一个人之手——开发者荷兰程序员Guido van Rossum。
众所周知,大多数编程语言都由大型公司雇佣大量专业人员集体研发而成。在这种意义上,Python是独一无二的!
当然,开发者Russum并没有独自开发和完善Python的所有组件。这是一个开源项目,数千人曾在其中协助开发。尽管Python在数年的时间内不断演化,但人们选择它的目的始终相似。
开发Python的主要目的是帮助程序员编写清晰、有逻辑的程序,满足各种大小的项目的需求。这也是为什么Python如此受开发者欢迎。Python功能全面,可用于网页开发、游戏开发、配置服务器、执行科学计算和数据分析。
近年来,Python的普及率在众多编程语言中快速增长。由Stack Overflow发起的有关各个编程语言使用率的调查表明,Python的使用率不断攀升,已经超过众多竞争者登上榜首。
你知道吗?Python正和Netflix强强联合。
所以,这些年到底发生了什么?Python的热度怎么涨得这么快?
现在我来介绍那些促成了当今Python语言盛世的技术。
人工智能和机器学习的发展程度已远超出科幻小说。
正如ChrisDuffey在SuperhumanInnovation一书中所言,
“限制人工智能的只有人类的想象力。”
当今高密度数据不断扩张,人工智能和机器学习承担起过去人们似乎无法完成的任务。所有的科技巨头(Facebook,Microsoft,Google和Amazon)都在投入大量时间和精力开发人工智能和机器学习领域,并做出了贡献。
研究表明,人工智能和机器学习从业者更喜欢使用Python,因为它编写简单、便于阅读,使技术员们不再为复杂的编程语言结构所困扰。
全世界充斥着数据。席卷全球的数据狂风的规模也日渐扩张。现在我们的一举一动都能生成数据。所有行为,从社交网站上的图片和评论,到网页浏览记录和网上购物行为,再到股票价格和天气预报,都会被记录在案。
预计到2020年,人们每天将产出44字节大小的数据,这个数字比宇宙中可观测恒星总数多40倍。但是不经收集、整理或分析的数据,就是对社会利益无用的数据。因此,我们需要数据科学。
Python在数据科学运转周期中扮演者举足轻重的角色。如今的Python社区成功开发出诸如Numpy,Pandas, sci-kit-learn等优秀的数据分析库,用于处理数据。Python丰富的功能,让它能胜任收集数据、清理数据集、提取重要特征、构建机器学习模型和生成可视化数据图表等任务。
“数据科学家的工作只会越来越时髦”,经济学家兼Indeed求职网报告作者AndrewFlowers说。“越来越多的用人单位开始雇佣数据科学家”。
Github每年都会开展一次调研。2018年,来自TheState of the Octoverse的报告向我们展示了近年来Python的使用量是如何上升的。
Python现已深入Spotify,Netflix, Quora, Facebook和Google这类大公司的开发活动中。Google一直支持Python编程,现在它已经是官方的服务器端语言了。他们还把许多原本用Bash或者Perl编写的程序转写成了Python。
Google研究总监PeterNorvig说,
“Python始终是Google系统的重要部分,在系统扩张演化之后还是如此。现在数十个Google工程师都在使用Python,我们需要更多掌握这一编程语言的人才。”
Spotify和Netflix同样十分依赖Python,这两家公司借此分析服务器端处理的海量数据。分析数百万订阅者的信息,有助于针对每位用户产生更好的推送内容,后者也是Spotify和Netflix能坐拥数十亿收入的原因。
Python早已不是什么新生编程语言,它经过了多年的发展,始终领先,也将在未来保持着优势地位。这便是Python世界,IT行业正身在其中。
多花一些时间学习Python编程,未来的你定将收获颇丰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23