京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | George Seif
编译 | 廖琴 孙梦琪
来源 | 读芯术
数据科学家都应该知道如何有效地使用数据并从中获取信息。下面是小编整理的五大实用型统计学概念,每个数据科学家都应该熟知,它们能让你在数据科学领域发挥得更加行云流水。
从定义来看,数据科学实际上指的是从数据中获取信息的过程。数据科学旨在解释所有数据在现实世界中的意义,而不仅仅局限于数字层面。
为了提取嵌入在复杂数据集中的信息,数据科学家使用了许多工具和技术,包括数据探索、可视化和建模。在数据探索中常用的一类非常重要的数学技术是统计学。
从实践层面上讲,采用统计学使人们能够对数据进行具体的数学总结。人们可以使用统计数据来描述部分数据的属性,而不必试图描述每个数据点。通常这就足以提取一些关于数据结构和组成的信息。
有时候,在听到“统计学”这个词时,人们总会想得过于复杂。的确,它可能是有点抽象,但并不总是需要借助复杂的理论来从统计技术中获得有价值的内容。
最基本的统计学知识往往在数据科学中最有实用价值。
本文为大家介绍5个用于数据科学的实用统计学知识。它们不是令人抓狂的抽象概念,而是极为简单的、可以应用的技术,且前景很好。
那么开始吧!
1. 集中趋势
数据集或特征变量的集中趋势是指集的中心值或典型值。也就是说,可能存在一个值可以(在一定程度上)最充分地描述数据集。
例如,假设正态分布以(100,100)为中心。那么点(100,100)就是中心趋势,因为在所有可选择的点中,它总结数据的效果最佳。
对于数据科学,可以使用集中趋势测度快速简单地了解整体数据集。数据的“中心”可能是非常有价值的信息,可以说明数据集究竟是如何产生偏差的,因为数据所围绕的任何值本质上都是有偏差的。
在数学上有两种常见的选择集中趋势的方法。
平均数
数据集的平均数指整个数据集围绕分布的一个平均数值。在定义平均值时,所有用于计算平均数值的权重都是相等的。
例如,计算以下5个数字的平均数:
(3 + 64 + 187 + 12 + 52) / 5 = 63.6
平均值对于计算实际的数学平均数非常有用。使用像Numpy这样的Python库计算也非常快。
中位数
中位数是数据集的中间值。也就是说,如果把数据从小到大(或者从大到小)排序,然后取集的中间值:这便是中位数。
接下来再次计算相同的5个数的中位数:
[3, 12, 52, 64, 187]→52
中位数与平均数63.6相差很大。二者没有对错之分,可视情况和目的选择其一。
计算中位数需要对数据进行排序——如果数据集很大,这就不实用了。
另一方面,中位数对离群值的鲁棒性要强于平均数,因为如果有一些非常高的离群值,平均数就会偏大或偏小。
平均数和中位数可以用简单的numpy单行代码计算:
numpy.mean(array)
numpy.median(array)
2. 分布
在统计学中,数据分布是指在更大的范围内,数据集中趋向一个或多个值的程度。
看看下面的高斯概率分布图——假设这些是描述真实世界数据集的概率分布。
蓝色曲线的扩展值最小,因为其大部分数据点都在一个相当窄的范围内。红色曲线的扩展值最大,这是因为大多数数据点所占的范围要大得多。
图中显示了这些曲线的标准差值,下一节中将进行解释。
标准差
标准差是量化数据分布最常见的方法。计算分五步进行:
1.求平均数。
2.求每个数据点到平均数距离的平方。
3.对步骤2中的值进行求和。
4.除以数据点的个数。
5.取平方根。
值越大意味着数据离平均数更“分散”。值越小意味着数据更集中在平均值附近。
用Numpy很容易就能计算出标准差:
numpy.std(array)
3. 百分数
百分数可用于进一步描述范围内每个数据点的位置。
百分数根据数据点在值范围中的位置高低来描述数据点的确切位置。
更准确地说,第p个百分位是数据集中的值,在该值处可以将其分为两部分。下半部分包含p %的数据,即第p个百分位。
例如,看下列11个数字:
13 5 7 9 11 13 15 17 19 21
数字15是第70百分位,因为当在数字15处将数据集分成两部分时,剩余70%的数据小于15。
百分数与平均数和标准差相结合,可以让人们很好地了解特定的点在数据分布/数据范围内的位置。如果它是一个异常值,那么它的百分数将接近于终点——小于5%或大于95%。另一方面,如果百分位数计算结果接近50,那么可知其接近集中趋势。
数组的第50百分位可以用Numpy来计算,代码如下:
numpy.percentile(array, 50)
4. 偏态
数据偏态用于衡量数据的不对称性。
正偏态表示值集中在数据点中心的左侧;负偏度表示值集中在数据点中心的右侧。
下图充分说明了这一点。
下面的公式可用于计算偏态:
偏态可说明数据分布与高斯分布的差距。偏态越大,数据集离高斯分布越远。
这很重要,因为若对数据的分布有一个粗略的概念,就可以为特定的分布定制要训练的ML模型。此外,并非所有ML建模技术都能对非高斯数据起作用。
在开始建模之前,再次强调,统计数据提供了重要的信息!
下面是在Scipy代码中计算偏态的方法:
scipy.stats.skew(array)
5. 协方差和相关性
协方差
两个特征变量的协方差可用于衡量二者的“相关性”。如果两个变量有正协方差,那么当一个变量增加时,另一个也会增加;当协方差为负时,特征变量的值将向相反的方向变化。
相关性
相关性也就是简单的标准化(比例)协方差,即两个被分析变量的积差。这将有效地促使关联范围始终保持在-1.0和1.0之间。
若两个特征变量的相关系数为1.0,则两个特征变量的相关系数为正相关。这也就意味着,如果一个变量的变化量是给定的,那么第二个变量就会按比例向相同的方向移动。
当正相关系数小于1时,表示正相关系数小于完全正相关,且相关强度随着数字趋近于1而增大。这同样也适用于负相关值,只是特征变量的值朝相反的方向变化,而不是朝相同的方向变化。
了解相关性对于主成分分析(PCA)等降维技术非常有用。从计算一个相关矩阵开始——如果有两个或两个以上的变量高度相关,那么它们在解释数据时实际上是多余的,可以删除其中一些变量以降低复杂性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27