京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 计算机视觉联盟
来源 | 人工智能爱好者社区
信息革命、移动互联网革命尚未落幕,智能革命又像一头大象一样撞进人类的生活,激荡着整个世界。任何足够先进的科技,初看都与魔法无异,但魔法背后是对规律和趋势的洞悉。计算机视觉联盟整理了2019十大科技趋势。我们希望,在魔法抵达之前,让科技演进的脉搏清晰可见。
趋势1:城市实时仿真成为可能,智能城市诞生
城市公共基础设施的感知数据与城市实时脉动数据流将汇聚到大计算平台上,算力与算法发展将推动视频等非结构化信息与其他结构化信息实时融合,城市实时仿真成为可能,城市局部智能将升级为全局智能,未来会出现更多的力量进行城市大脑技术和应用的研发,实体城市之上将诞生全时空感知、全要素联动、全周期迭代的智能城市,大大推动城市治理水平优化提升,预计在新的一年,中国会有越来越多城市具有大脑。
趋势2:语音AI在特定领域通过图灵测试
随着端云一体语音交互模组的标准化、低成本化,会说话的公共设施会越来越多,未来每一个空间都至少会有一个可以进行语音交互的触点。随着智能语音技术的提升,移动设备上的实时语音生成与真人语音可能将无法区分,甚至在一些特定对话中通过图灵测试。针对这一领域的规则甚至法律会逐步建立,引导行业走向规范化。
趋势3:AI专用芯片将挑战GPU的绝对统治地位
当下数据中心的AI训练场景下,计算和存储之间数据搬移已成为瓶颈,新一代的基于3D堆叠存储技术的AI芯片架构已经成为趋势。AI芯片中数据带宽的需求会进一步推动3D堆叠存储芯片在AI训练芯片中的普遍应用。而类脑计算芯片也会在寻找更合适的应用中进一步推动其发展。在数据中心的训练场景,AI专用芯片将挑战GPU的绝对统治地位。真正能充分体现Domain Specific的AI芯片架构还是会更多地体现在诸多边缘场景。
趋势4:超大规模图神经网络系统将赋予机器常识
单纯的深度学习已经成熟,而结合了深度学习的图神经网络将端到端学习与归纳推理相结合,有望解决深度学习无法处理的关系推理、可解释性等一系列问题。强大的图神经网络将会类似于由神经元等节点所形成网络的人的大脑,机器有望成为具备常识,具有理解、认知能力的AI。
趋势5:计算体系结构将被重构
无论是数据中心或者边缘计算场景,计算体系将被重构。未来的计算、存储、网络不仅要满足人工智能对高通量计算力的需求,也要满足物联网场景对低功耗的需求。基于FPGA、GPU、ASIC等计算芯片的异构计算架构,以及新型存储器件的出现,已经为传统计算架构的演进拉开了序幕。从过去以CPU为核心的通用计算而走向由应用驱动(Application-driven) 和技术驱动(Technology-driven)所带来的Domain-specific 体系结构的颠覆性改变,将加速人工智能甚至是量子计算黄金时代的到来。
趋势6:5G网络催生全新应用场景
第五代移动通信技术将使移动带宽大幅度增强,提供近百倍于4G 的峰值速率,促进基于4K/8K超高清视频、AR/VR等沉浸式交互模式的逐步成熟。连接能力将增强至百亿级,带来海量的机器类通信及连接的深度融合。网络向云化、软件化演进,网络可切片成多个相互独立、平行的虚拟子网络,为不同应用提供虚拟专属网络,加上高可靠、低时延、大容量的网络能力,将使车路协同、工业互联网等领域获得全新的技术赋能。
趋势7:数字身份将成为第二张身份证
生物识别技术正逐渐成熟并进入大规模应用阶段。随着3D传感器的快速普及、多种生物特征的融合,每个设备都能更聪明地“看”和“听”。生物识别和活体技术也将重塑身份识别和认证,数字身份将成为人的第二张身份证。从手机解锁、小区门禁到餐厅吃饭、超市收银,再到高铁进站、机场安检以及医院看病,靠脸走遍天下的时代正在加速到来。
趋势8:自动驾驶进入冷静发展期
单纯依靠“单车智能”的方式革新汽车,在很长一段时间内无法实现终极的无人驾驶,但并不意味着自动驾驶完全进入寒冬。车路协同技术路线,会加快无人驾驶的到来。在未来2-3年内,以物流、运输等限定场景为代表的自动驾驶商业化应用会迎来新的进展,例如固定线路公交、无人配送、园区微循环等商用场景将快速落地。
趋势9:区块链回归理性,商业化应用加速
在各行业数字化的进程中,物联网技术将支撑链下世界和链上数据的可信映射,区块链技术将促进可信数据在流转路径上的重组和优化,从而提高流转和协同的效率。在跨境汇款,供应链金融,电子票据和司法存证等众多场景中,区块链将开始融入我们的日常生活。随着“链接”价值的体现,分层架构和跨链互联将成为区块链规模化的技术基础。区块链领域将从过度狂热和过度悲观回归理性,商业化应用有望加速落地。
趋势10:数据安全保护技术加速涌现
各国政府都会趋向于推出更加严厉的数据安全政策法规,企业将在个人数据隐私保护上投入更多力量。未来几年,黑客、黑产攻击不会停止,但数据安全保护技术将加码推出。跨系统的数据追踪溯源相关的技术,比如水印技术,数据资产保护的技术以及面向强对抗的高级反爬虫技术等将得到更加广泛应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27