京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Destiny
来源 | 木东居士
0x00 前言
前面写过一篇文章,叫做《数据可视化的基本流程》,是站在可视化过程中的上下游关系,来梳理和介绍数据可视化的全过程,及其各个环节的主要工作内容。今天这篇文章,也是介绍数据可视化的过程,但是更多的是站在产品经理的视角,去呈现一个数据需求,从需求提炼、分析,到最终可视化呈现的一个过程。
可视化的终极目标是洞悉蕴含在数据中的现象和规律,从而帮助用户高效而准确的进行决策。
0x01 可视化过程
一个完整的数据可视化过程,主要包括以下4个步骤:
0x02 确定数据主题
可视化过程的第一步:确定数据主题,即确定需要可视化的数据是围绕什么主题或者目的来组织的。
在可视化过程中的4个步骤之中,第一步是相对来说较容易的一步。
业务运营中的具体场景和遇到的实际问题,公司层面的某个战略意图,都是确定数据可视化主题的来源和依据。简而言之,一个具体问题或某项业务、战略目标的提出,其实就可以对应一个数据可视化的主题。
比如,银行分析不同城市用户的储蓄率、储蓄金额,电商平台进行双十一的实时交易情况的大屏直播,物流公司分析包裹的流向、承运量和运输时效,向政府机构或投资人展示公司的经营现状等,都可以确定相应的数据主题。
0x03 提炼数据
确定数据围绕什么主题进行组织之后,我们接下来要了解我们拥有哪些数据,如何来组织数据,这里面又衍生出另外三个问题。
1. 确定数据指标
分析和评估一项业务的经营现状通常有不同的角度,这也就意味着会存在不同的衡量指标。同样一个业务问题或数据,因为思考视角和组织方式的不同,会得出截然不同的数据分析结果。
例如,要评估寄件这项业务,有人想了解寄件量,有人想知道不同快递公司的运输时效,有人想知道寄件用户的下单渠道,还有人想了解寄件收入。
拿起数据,就开始画图,会让整个数据可视化作品没有重点、杂乱无章,是一种用战术上的勤劳掩盖战略上的懒惰,最终的呈现效果一般不理想。
2. 明确数据间的相互关系
基于不同的分析目的,所关注的数据之间的相互关系也截然不同,这一步实质上是在进行数据指标的维度选择。
例如,都要统计寄件量,有人希望知道各个快递公司的寄件量是多少,有人想了解一天内的寄件量高峰位于哪个时段,还有人想知道寄件量TOP10的城市排名。这里的快递公司、时段、城市,都是观察寄件量这个指标的不同维度。
通常,数据之间的相互关系包含如下几类:
3. 确定用户关注的重点指标
确定了要展示的数据指标和维度之后,就要对这些指标的重要性进行一个重要性排序。
因为对于一个可视化展示的终端设备而言,其屏幕大小有限,且用户的时间有限、注意力也极其容易分散。如何让用户在短时间内,更有效率的获取到重要的信息,这是评估一个可视化产品好坏的重要因素。
在可视化设计之前,不妨问用户两个问题:
(1)如果整个版面只能展示一个最重要的信息,你希望是什么?
(2)你希望展现这些信息的理由是什么?通过用户对这些问题的回答,你能了解到,在已确定的指标和维度中,用户最关注的是哪个或哪些。
通过确定用户关注的重点指标,才能为数据的可视化设计提供依据,从而通过合理的布局和设计,将用户的注意力集中到可视化结果中最重要的区域,提高用户获取重要信息的效率。
0x04 确定图表
数据之间的相互关系,决定了可采用的图表类型。常见的数据关系和图表类型的对应关系如下图所示:
通常情况下,同一种数据关系,对应的图表类型是有多种方式可供选择,是不是随机选择一种方式就可以了呢?
当然不是,图表的目的是为了更好的去呈现数据中的现象和规律,那么必然,可视化图表的效果也极大的受到实际数据的影响,这个后续再分享。
0x05 可视化设计
在做好了以上的需求收集和整理之后,接下来就要开始进入可视化的设计和呈现的阶段。这一步主要包括两个方面:一是进行可视化布局的设计,二是数据图形化的呈现。
1. 页面布局
可视化设计的页面布局,要遵循以下三个原则:
(1)聚焦
设计者应该通过适当的排版布局,将用户的注意力集中到可视化结果中最重要的区域,从而将重要的数据信息凸显出来,抓住用户的注意力,提升用户信息解读的效率。
(2)平衡
要合理的利用可视化的设计空间,在确保重要信息位于可视化空间视觉中心的情况下,保证整个页面的不同元素在空间位置上处于平衡,提升设计美感。
(3)简洁
在可视化整体布局中,要突出重点,避免过于复杂或影响数据呈现效果的冗余元素。
2. 图表制作
影响图表呈现效果的,主要有两个影响因素,一个是数据层面的,一个是非数据层面的。
(1)数据层面
若数据中存在极端值或过多分类项等,会极大影响可视化的效果呈现,如柱形图中柱形条的高度、气泡图中气泡的大小、饼图中的分类项太多等。
对于数据本身造成的可视化效果不佳的情况,我们是不是就束手无策了呢?当然不是,在以往的可视化过程中,本人虽然也踩了很多坑,但是对于如何解决这类问题也积累了一些经验,下次专题分享。
(2)非数据层面
非数据层面,但是影响图表呈现效果的因素,通常在设计过程中就可以解决。
比如图表的背景颜色、网格线的深浅有无、外边框等等,这类元素是辅助用户理解图表的次要元素,但如果不加处理全部放出,视觉上就不够聚焦,干扰到你真正想展示的数据信息。
因此,对于此类非数据层面,但是影响图表视觉呈现的元素,应该尽量隐藏和弱化。
0xFF 总结
最后一句个人经验:作为数据可视化的设计者,你应该在可视化设计之前,全面了解此次数据的分布情况、量级,通常几行sql就可以搞定,这样在进行可视化设计的时候,可以少踩很多坑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27