
作者 | DD-Kylin
来源 | 木东居士
0x00 前言
我们知道,回归模型可以解决因变量为连续变量的问题,但是,如果因变量为分类变量的话,用回归的方法就行不通了。这个时候我们就得选择用其他的分类方法了,如决策树、随机森林、SVM等。而本篇文章要说的逻辑回归也是一种很好的分类方法。我们需要明确的一点是,逻辑回归虽然是“回归”,但是它本质上是一种二分类算法,用来处理二分类问题的。
0x01 走近逻辑回归
问题1:你能说说什么是逻辑回归吗?
回答:逻辑回归是一种二分类算法,一般用来解决二分类问题,但是它也可以用来解决多分类问题,当使用它来解决多分类问题的时候,由于逻辑回归的特点,我们一般将多分类问题转化为二分类问题。这里多分类问题的转化有三种拆分策略,分别是一对一、一对其余和多对多。通过多分类拆分策略,我们可以使用逻辑回归来进行多分类问题的预测。但是这种方法我们一般不用,因为多分类问题我们可以使用随机森林、朴素贝叶斯、神经网络这些更好的算法进行预测。
问题2:逻辑回归是二分类算法,那它究竟是如何进行分类的?
回答:逻辑回归是通过判断数据属于某一类的概率值大小来决定要将该数据判为哪一类。这里需要引入sigmoid函数(Y = 1/(1+e-z) , 其中z = wTx+b
),而sigmoid函数有一个很特殊的性质,那就是它可以将任意的输入值都转为(0,1)上的输出。逻辑回归通过sigmoid函数来逼近后验概率p(y =1 |x),一般地,会将sigmoid函数输出值大于0.5的判为正例(即1),将输出值小于0.5的判为反例(即0)。
sigmoid函数的图像如下:
0x02 再会逻辑回归
问题1:逻辑回归进行分类时的阈值是一定的吗?可不可以人为地进行调整呢?
回答:不一定。可以通过人为地进行修改的。逻辑回归输出的是概率,即将Sigmoid函数输出的y视为正例的可能性,我们可以自定义分类阈值来改变分类的结果。
举个栗子,在邮件分类中,如果sigmoid函数输出某个邮件属于垃圾邮件的y值是0.6,属于有用邮件的y值是0.4。即P (y = 垃圾邮件|已知条件) = 0.6,
相对应的 p(y = 有用邮件|已知条件) = 0.4。
在本例中,如果是将p>0.5视为垃圾邮件,那么判这封邮件为垃圾邮件;如果是将p>0.7视为垃圾邮件,那么会判这封邮件为有用邮件。一般情况下默认数据属于哪一类的可能性较大就将数据判为哪一类,但是由于逻辑回归输出的是概率值的这一特性,所以我们可以根据具体的情况自定义阈值来得到更切合实际应用场景的模型。
问题2:逻辑回归中的极大似然法是用来做什么的?
回答:因为sigmoid函数中,z = wTx+b,其中 w和b都是未知的,使用极大似然估计法是为了求出w和b使得每个样本属于其真实标记的概率值越大越好。 但是最大化似然函数的求解有点困难,所以将其转为求解最小值,即在求得的目标似然函数前面加上一个负号转为求解最小值。由于改变符号后的目标函数是高阶可导连续凸函数,于是可以使用梯度下降法、牛顿法等来求解它的最小值,通过函数的转化就可以较为轻松地求出w和b,进而也就能知道sigmoid函数的输出了。
注:逻辑回归是一种判别模型
问题3:逻辑回归有哪些应用?
回答:逻辑回归的应用其实跟它的算法特点有很大的关系。由于逻辑回归是一种性能很好的二分类算法。所以逻辑回归几乎可以应用于任何需要二分类的问题。如癌症检测、垃圾邮件分类、广告点击预测、医疗效果分析等。
0x03 优点VS缺点
问题:逻辑回归的优点是什么?缺点又是什么?
回答:
逻辑回归的优点分别是:
逻辑回归的缺点分别是:
0x04 总结
关于逻辑回归,我一直觉得它是一个很简单但是很强大的算法,直到在写这篇文章的时候,才发现原来它有那么多知识点需要理解。本文也只是起到一个抛砖引玉的作用,如果大家想了解更多的话,建议各位可以去看一下书,练一下真实的案例,肯定可以收获更多的理解!下面留几个讨论题:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11