
作者 | DD-Kylin
来源 | 木东居士
0x00 前言
我们知道,回归模型可以解决因变量为连续变量的问题,但是,如果因变量为分类变量的话,用回归的方法就行不通了。这个时候我们就得选择用其他的分类方法了,如决策树、随机森林、SVM等。而本篇文章要说的逻辑回归也是一种很好的分类方法。我们需要明确的一点是,逻辑回归虽然是“回归”,但是它本质上是一种二分类算法,用来处理二分类问题的。
0x01 走近逻辑回归
问题1:你能说说什么是逻辑回归吗?
回答:逻辑回归是一种二分类算法,一般用来解决二分类问题,但是它也可以用来解决多分类问题,当使用它来解决多分类问题的时候,由于逻辑回归的特点,我们一般将多分类问题转化为二分类问题。这里多分类问题的转化有三种拆分策略,分别是一对一、一对其余和多对多。通过多分类拆分策略,我们可以使用逻辑回归来进行多分类问题的预测。但是这种方法我们一般不用,因为多分类问题我们可以使用随机森林、朴素贝叶斯、神经网络这些更好的算法进行预测。
问题2:逻辑回归是二分类算法,那它究竟是如何进行分类的?
回答:逻辑回归是通过判断数据属于某一类的概率值大小来决定要将该数据判为哪一类。这里需要引入sigmoid函数(Y = 1/(1+e-z) , 其中z = wTx+b
),而sigmoid函数有一个很特殊的性质,那就是它可以将任意的输入值都转为(0,1)上的输出。逻辑回归通过sigmoid函数来逼近后验概率p(y =1 |x),一般地,会将sigmoid函数输出值大于0.5的判为正例(即1),将输出值小于0.5的判为反例(即0)。
sigmoid函数的图像如下:
0x02 再会逻辑回归
问题1:逻辑回归进行分类时的阈值是一定的吗?可不可以人为地进行调整呢?
回答:不一定。可以通过人为地进行修改的。逻辑回归输出的是概率,即将Sigmoid函数输出的y视为正例的可能性,我们可以自定义分类阈值来改变分类的结果。
举个栗子,在邮件分类中,如果sigmoid函数输出某个邮件属于垃圾邮件的y值是0.6,属于有用邮件的y值是0.4。即P (y = 垃圾邮件|已知条件) = 0.6,
相对应的 p(y = 有用邮件|已知条件) = 0.4。
在本例中,如果是将p>0.5视为垃圾邮件,那么判这封邮件为垃圾邮件;如果是将p>0.7视为垃圾邮件,那么会判这封邮件为有用邮件。一般情况下默认数据属于哪一类的可能性较大就将数据判为哪一类,但是由于逻辑回归输出的是概率值的这一特性,所以我们可以根据具体的情况自定义阈值来得到更切合实际应用场景的模型。
问题2:逻辑回归中的极大似然法是用来做什么的?
回答:因为sigmoid函数中,z = wTx+b,其中 w和b都是未知的,使用极大似然估计法是为了求出w和b使得每个样本属于其真实标记的概率值越大越好。 但是最大化似然函数的求解有点困难,所以将其转为求解最小值,即在求得的目标似然函数前面加上一个负号转为求解最小值。由于改变符号后的目标函数是高阶可导连续凸函数,于是可以使用梯度下降法、牛顿法等来求解它的最小值,通过函数的转化就可以较为轻松地求出w和b,进而也就能知道sigmoid函数的输出了。
注:逻辑回归是一种判别模型
问题3:逻辑回归有哪些应用?
回答:逻辑回归的应用其实跟它的算法特点有很大的关系。由于逻辑回归是一种性能很好的二分类算法。所以逻辑回归几乎可以应用于任何需要二分类的问题。如癌症检测、垃圾邮件分类、广告点击预测、医疗效果分析等。
0x03 优点VS缺点
问题:逻辑回归的优点是什么?缺点又是什么?
回答:
逻辑回归的优点分别是:
逻辑回归的缺点分别是:
0x04 总结
关于逻辑回归,我一直觉得它是一个很简单但是很强大的算法,直到在写这篇文章的时候,才发现原来它有那么多知识点需要理解。本文也只是起到一个抛砖引玉的作用,如果大家想了解更多的话,建议各位可以去看一下书,练一下真实的案例,肯定可以收获更多的理解!下面留几个讨论题:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26