京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Saurabh Hooda
来源 | CDA数据分析研究院
简短的回答是肯定的。只要数据科学家中存在“数据”,结构化查询语言(或我们称之为“quel”)将仍然是其中的重要部分。本文将深入探讨数据科学及其与SQL的关系,包括5 W和1H的答案 - 如何,为什么,何地,何时,谁和什么。我们还将学习数据库管理系统(DBMS)的基础知识,并了解数据科学家如何成为您职业生涯的最佳选择。
什么是数据科学
数据科学的视角非常广泛,作为一名数据科学家需要深入了解各种数学流,机器学习、计算机科学、统计研究、数据处理以及多个领域的专业知识。这些数学流中的每一种知识系统都需要对数据进行大量地研究和探索,无论是收集、分析还是处理。
为什么数据科学如此受欢迎
目前来说数字世界正处于巅峰时期,随着市场需求和广泛营销策略的不断增长,数据已成为所有营销目的的关键。例如,如果我想购买一部新手机,我会去亚马逊或Flipkart这样的网上商店,浏览不同的品牌,挑选心仪的品牌手机添加到我的购物车中,最后经过一些对比研究后决定购买。在网站后台,在线商店会保存我的购物车信息和浏览历史记录,并在我下次登录时向我展示更多相关品牌的手机推荐。即使我不买,在线商店也会给我发电子邮件或短信,提醒我购物车里的商品“还在等着我”。 因此,数据在建立买卖双方关系中起着至关重要的作用。客户展现的历史行为数据越多,向买方呈现的个人定制化推荐程度就越高。这种个性化推荐算法不仅适用于电子商务,也同样适用于各行各业用户价值分析和个性化营销方案中。
怎么样实现
数据在哪里
所有的数据都存储在数据库中。因此,SQL对于处理需要定期加工和转换的大量数据至关重要,同时它也是数据科学打算做的精准营销和用户反馈的重要工具。例如,如果您不喜欢Facebook给您推荐的视频,您可以选择'隐藏此项',Facebook会立即向您询问隐藏原因。用户的这些选项数据也需要存储在数据库中。
通过像SQL这样的关系数据库,数据科学提供了一个连续的系统来处理和改进数据的呈现和处理方式。
SQL应用领域
SQL是整个数据科学领域的重要组成部分。但是,在企业实际业务工作中它究竟适用于哪些工作呢?如果您想成为数据分析师,数据工程师或数据架构师,您将需要学习SQL以及C,R和Python等编程语言。这是一个简单的图表,显示了使用SQL的阶段:
图片中突出显示的交集部分是我们需要SQL知识的地方:大数据,大数据分析和数据分析。
为何选择SQL
尽管NoSQL数据库提供了高性能和高速度,但SQL数据库仍然被广泛用于所有实际业务工作中。有更多的开发人员了解SQL技术,因此支持和翻译帮助文档使其更加丰富。此外,数据完整性是使SQL与任何NoSQL数据库分开的一个关键因素,通过确保没有重复或未经授权的数据可以进入系统。此外,对于复杂的查询和连接,结构良好的关系数据库可以更好地管理数据。
什么是SQL
SQL是一种关系数据库管理系统,用于存储,检索,更新和读取数据库中的数据。
在本文中,我们将专注于SQL如何对数据科学起作用。让我们举一个简单的例子,说明您作为数据科学家如何使用SQL来收集和分析数据。
假设您想通过检查有多少用户订购它的副本来了解作者'Carl Shan'的一本名为'The Data Science Handbook'的书的受欢迎程度。因为SQL是具有适当模式的结构良好的语言,所以您可以使用如下结构:
customer table
order_details table
book table
要获取此类数据,我们需要使用一些关键字段或主键和外键字段来连接这三个表。在这种情况下,order_id对于所有三个表都是共有的关键字段,可以用来作为连接字段,使用这些连接后的数据,我们可以编写查询语句来获取必要的字段信息。
在现实生活中,这种系统可以处于多个层次的分析需求中,我们需要使用SQL分析和处理大量数据。来自数百万用户的日常行为记录数据被存储在SQL数据库中,用于不同目的的分析需求。想象一下,在不使用SQL的情况下我们能够完成这些海量数据的处理和分析工作吗?
虽然有些人认为SQL在数据科学家工作中的作用正在减少,但事实并非如此。SQL在数据分析工作中依然十分的重要。
以下是数据科学家应该了解的一些关键SQL概念:
谁应该学习SQL
到现在为止,您应该明白SQL相关从业者是否可以成为数据科学家以及如何成为一名数据科学家。如果您对数据非常感兴趣,并希望将数据科学作为您的职业选择,那么您一定要学习SQL。
数据科学家作为职业选择
当今社会每天都会产生大量数据,需要将其转换为新的业务解决方案,设计和产品,这些只能来自数据科学家的创造性思维。这种需求至少会在几十年内增加。除了行业为数据科学家提供的脂肪包之外,吸引专业人士参与这项工作的挑战和不断增长的角色也是如此。从数据管理员,数据架构师,数据分析师,业务分析师到数据管理员或商业智能经理,在数据科学圈中有很多机会可供选择。了解SQL,R和Python等编程语言,统计和应用数学,结合批判性思维和行业知识,可以比你想象的更快。
作者:Saurabh Hooda曾在全球范围内为各种电信和金融巨头工作。在Infosys和Sapient工作了十年之后,他开始了他的第一家创业公司Leno,以解决超本地书籍共享问题。他对产品营销和分析感兴趣。他的最新企业Hackr.io为每种编程语言推荐了最好的数据科学教程和在线编程课程。所有教程都由编程社区提交并投票。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26