京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析研究院
经常遇到有人留言咨询,表明自己想做数据分析,但是面临着很多“困境”,如:
● 大学本科数学专业的,想从事数据分析师,但没项目经验怎么办?应该怎么规划?
● 我一个朋友想做数据分析,她是学物理的,过去有一些工作经验,但是跟数据分析没什么关系,去面试数据分析有压力吗?
● 我是文科生,没有数据分析经验,也没有数理统计基础,想找一份数据分析的工作难吗?
归根溯源,很多人看好数据分析,想要入职数据分析岗位,但是为什么选择数据分析,你真的想清楚弄明白了吗?是单纯的因为看好这个职业的发展?还是因为看到市场需求,单纯的跟风转行?还是对数据热衷,单纯的喜欢数据,被数字吸引?或者还没想好自己想做什么?……
本文将从三个方面给大家解读以上困惑,希望大家能找准自己的定位,并找到自己心仪的工作。
一、选对行业和适合自己的方法技术工具
首先你需要分析现有招聘职位,通过对招聘职位的分析,发现互联网行业以及生活服务、医疗健康等行业人才需求比较迫切,而你要做的是根据当前市场需求,确定自己喜欢的行业,并为之开始准备。
而技术工具方面365 Data Science 层收集了LinkedIn 上 1001 数据科学家的信息,发现目前需求量最大的编程语言为 Python、R语言和 SQL。另外,还要求具备 MATLAB、Java、Scala 和 C/C++ 方面的知识。为了能够脱颖而出,需要熟练掌握 Weka 和 NumPy 这类工具。
确定好自己感兴趣的行业,自己需要掌握的工具,然后你已经成功开启了自己进入数据分析行业的第一步——明确的目标。
二、没有工作经验可能真的不是问题
前面你已经选好了自己想要从事的行业,复盘了自己真实掌握的技能,现在想找数据分析的工作需要解决的就是工作经验的问题。笔者想说,为了降低跳槽成本和求职难度,建议优先选择之前所在行业。
当然,有经验或许更容易找到适合自己的工作,但是不同的项目经验会让你掌握更多的技能好对不同商业模式的深刻理解。例如参加Kaggle这种竞赛课题,或者像CDA数据分析师课程一样跟着老师踏踏实实做几个战线自己能力的项目,多积累你想进入的行业的相关案例。
有时候不得不说,经验是可以用项目来弥补的,重要的是要让自己简历这张薄薄的纸足够丰满。
三、对入职企业有充分认知真的很重要
数据分析,大多数你要接触的是关于数学、编程和技术。但是不能否认的是作为数据分析工作人员,你需要对该公司所在行业有一定的认识——行业发展趋势、客户的痛点、竞争对手等信息。
毕竟手上有粮,心中不慌,为面试做好充足的准备才能保证面试的质量。
事实证明,如果你真的有实力,能力和企业的需求相匹配,找一份数据分析的工作不仅不难,好的工作真的是任君挑选。
这里不仅有全面体系的内容,还有资深的老师言传身授、助教全天候的学习路径指导,以及人工安排的监督学习机制,更重要的是你能认识一群小伙伴,一起从无到有完成一个数据分析项目,一起打怪升级,一起成为合格优秀的数据分析师。
在这里,你将掌握如何建置数据仓库、使用可视化方法发现数据中的模式规律、使用统计分析方法进行验证、结合数据建模技术进行预测并清晰传达你的洞察。毕业后,你将成为各大企业抢手的数据分析师。
【拓展资讯】
我们的师资
李奇
微软Excel MVP(Excel最有价值专家)/经管之家签约讲师/中国电子表格应用大会主席
曾在IBM中国担任销售管理团队数据分析项目组长及德勤北京所的数据分析高级咨询顾问。专精于企业数据分析、设计及实施商业智能业务解决方案、软件开发及SQL、Excel相关数据分析课程培训等。
傅老师
金融数学博士/CDA数据分析研究院金牌讲师
主要从事金融数学,金融数据分析等领域的研究,发表SCI,EI,CSSCI核心期刊论文多篇。在具体行业方面,傅教授先后担任过咨询公司、互联网金融机构、数据管理公司的高级数据分析顾问,先后参与过客户估值、反欺诈识别、舆情分析等数据分析项目,有着丰富的行业经验。
丁亚军
CDA数据分析师金牌讲师/数据分析总监
现任职于南京上度市场咨询有限公司,SAS、SPSS 软件讲师、中国学习路径图国际中心技术顾问。曾参与2012 国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核、中国卫生状况调查、江苏广电 CRM 数据挖掘等大型数据处理项目。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22