京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你知道哪些做数据分析的图表?柱状图、饼状图、折线图、散点图,数据分析图表有很多,用excel就可以生成,但是本文我想告诉你的是,通过这些图表该怎么做分析?
常见的6种数据分析图表及应用方式:
1.柱状图:用于做比较
柱状图是最基础的一种图表,通过柱子来表现数据的高度,进而比较不同数据之间的差异,一眼可以看到数据量的大小对比,一般来说,柱状图的横轴是时间轴,纵轴是数据轴。
但柱状图并不是万能的,需要基于某一个主题比较数据量的变化,比如不同月份的新增用户,不同渠道的新增用户,但如果将活跃用户、留存用户、新增用户这三个维度放在一张柱状图里比较,就没有太大意义。
2.折线图:看数据变化的趋势
折线图一般基于时间维度看数据量的变化趋势,发现整体走向和单体突出数据,比如通过折线图可以看出全年的新增用户变化情况,找出数据变化的高点和低点,而柱状图则用来对比不同高点之间的变化,进而找原因。
折线图可以将不同纬度的数据放在一起比较,比如新增用户、活跃用户、流失用户三条用户变化曲线放在一起,就可以观察三者之间的彼此影响,例如新增用户量大时有没有对活跃用户带来提升,流失情况是否严重,进而得出活动效果的综合评价。
3.饼状图:用来看各部分的占比
饼状图和柱状图在应用上有一定的重合,例如不同渠道带来的新增用户量,饼状图和柱状图都可以表现,但饼状图看的是单一渠道转化用户的占比,柱状图更容易发现不同渠道转化用户的差距。
饼状图的应用重点在于发现单体因素在整体因素中的占比,例如活跃用户在整体用户中的占比,但如果用多个单体因素做饼状图,可能导致数据特征不明显。
4.散点图:用于2维数据的比较
散点图可以用于3维数据的表现,同时可以进行2维数据的比较。例如将不同活动带来的新增用户和留存用户进行比较时,横轴为留存用户,纵轴为新增用户,而点则表示不同的活动主题。
从而可以看出不同活动主题的用户转化和留存情况,一般我们将数据大的维度作为纵轴,更有利于屏幕的展示。
5.气泡图:用户3维数据的比较
气泡图是对散点图的升级,通过散点图中点的大小来表现第三维数据,例如将上文案例中,横轴为留存用户,纵轴为新增用户,点为活动主题,而点的大小为活跃用户数量,活跃用户越高的活动点越大,可以看出不同活动在新增、留存和活跃3个维度的数据差异。
6.雷达图:思维以上数据的对比
雷达图可以应用于多维度数据对比,比如在分析不同用户的行为特征时,我们可以从启动次数、使用时长、购物次数、浏览商品数量、下单金额等多个维度进行分析,那么反映到图表上就可以看出不同用户群组特征在不同维度的差异。
雷达图一方面可以发现不同群组用户的特征对比,另一方面可以总结不同用户的特征,例如还是以上几个维度,我们可以以1个指标为关键指标,如下单金额指标,观察出下单金额高的用户在浏览商品数量、使用时长等方面的表现,进而找到提升下单金额的方法,如提高用户的商品浏览数量。
总结:数据分析的图表多种多样,不同图表之间也可以进行组合分析,如将柱状图和折线图组合,折线图反应的是整体变化趋势,柱状图反应的是关键节点的数据差异,可以从一张图标上观察到两个维度的数据对比。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16