京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在机器学习中,我们会遇到很多算法,而这些算法都是能够帮助机器学习解决很多问题, 可以说,机器学习是整个人工智能的核心。当然,机器学习的算法特征之一就是模型,那么大家是否知道机器学习建模的过程是什么呢?下面我们就给大家介绍一下这个内容。
建模的过程离不开模型的求解,我们假设输入特征变量记为X,输出变量记为Y,他们对应的具体取值分别记为x和y,输入变量X可以是标量也可以是向量。本系列课程中除非特殊声明,否则特征向量都是列向量,因此输入实例x的列向量可以表示为:x=(x(1),x(1),...,x(i),...,x(n))T。
那么这个式子是什么意思呢?其中x(i)表示x的第i个特征值,因此x是一个具有n个特征值的特征向量。注意,我们将会使用另一种表示方法xi表示第i个输入实例。那么第i个输入实例的第k个特征值就表示为x(k)i。因此,对于具有N个训练实例的有监督学习的训练数据集就可以表示为:T={(x1,y1),(x2,y2),...,(xN,yN)}。当我们有了以上的数据表示,那么对于一个机器学习算法来说,基本上的提出过程可以总结为四个步骤。
第一就是根据特征向量的数据分布提出一个合适的模型函数 y=f(x;θ) 来估计参数分布。第二个步骤就是提出一个合适的损失函数 L(x,y) 计算对于训练数据集上的所有训练样本估计的误差损失大小:L(x,y)=1NN∑i=1L(yi,f(xi))。第三个步骤就是用合适的优化算法使得损失函数带有参数的 L(x,y) 的值最小化,即:minf∈F1NN∑i=1L(yi,f(xi))。第四个步骤就是求解最优化上述函数值得到 L(yi,f(xi)) 的最小值,从而得到原函数 y=f(x;θ) 的参数值θ的解:θ=(θ(1),θ(2),...,θ(K))。
在上述的式子中,参数个数K与模型函数 f(x;θ)相关,与特征向量维数以及数据集个数无关。这样新的类标未知的样本x就可以直接输入到函数f(x)中就可以得到新的预测类标值y。
我们为什么要重视建模过程呢?其实机器学习算法要素有四点,分别是特征、模型、策略和算法。所以我们一定要对模型给予足够重视。在这篇文章中我们给大家介绍了关于机器学习建模过程的相关知识,通过对这些知识的介绍,相信大家已经知道了机器学习建模的过程,希望这篇文章能够帮助大家更好地理解机器学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27