
在机器学习中,我们会遇到很多算法,而这些算法都是能够帮助机器学习解决很多问题, 可以说,机器学习是整个人工智能的核心。当然,机器学习的算法特征之一就是模型,那么大家是否知道机器学习建模的过程是什么呢?下面我们就给大家介绍一下这个内容。
建模的过程离不开模型的求解,我们假设输入特征变量记为X,输出变量记为Y,他们对应的具体取值分别记为x和y,输入变量X可以是标量也可以是向量。本系列课程中除非特殊声明,否则特征向量都是列向量,因此输入实例x的列向量可以表示为:x=(x(1),x(1),...,x(i),...,x(n))T。
那么这个式子是什么意思呢?其中x(i)表示x的第i个特征值,因此x是一个具有n个特征值的特征向量。注意,我们将会使用另一种表示方法xi表示第i个输入实例。那么第i个输入实例的第k个特征值就表示为x(k)i。因此,对于具有N个训练实例的有监督学习的训练数据集就可以表示为:T={(x1,y1),(x2,y2),...,(xN,yN)}。当我们有了以上的数据表示,那么对于一个机器学习算法来说,基本上的提出过程可以总结为四个步骤。
第一就是根据特征向量的数据分布提出一个合适的模型函数 y=f(x;θ) 来估计参数分布。第二个步骤就是提出一个合适的损失函数 L(x,y) 计算对于训练数据集上的所有训练样本估计的误差损失大小:L(x,y)=1NN∑i=1L(yi,f(xi))。第三个步骤就是用合适的优化算法使得损失函数带有参数的 L(x,y) 的值最小化,即:minf∈F1NN∑i=1L(yi,f(xi))。第四个步骤就是求解最优化上述函数值得到 L(yi,f(xi)) 的最小值,从而得到原函数 y=f(x;θ) 的参数值θ的解:θ=(θ(1),θ(2),...,θ(K))。
在上述的式子中,参数个数K与模型函数 f(x;θ)相关,与特征向量维数以及数据集个数无关。这样新的类标未知的样本x就可以直接输入到函数f(x)中就可以得到新的预测类标值y。
我们为什么要重视建模过程呢?其实机器学习算法要素有四点,分别是特征、模型、策略和算法。所以我们一定要对模型给予足够重视。在这篇文章中我们给大家介绍了关于机器学习建模过程的相关知识,通过对这些知识的介绍,相信大家已经知道了机器学习建模的过程,希望这篇文章能够帮助大家更好地理解机器学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18