
人工智能的流行使得现在很多自媒体对人工智能大肆渲染,也使得大众对人工智能存在或多或少的一些误解。比如说在人工智能中,机器是大于人类的,这不禁让人感觉到一点点恐慌。其实并不是这样的,在这篇文章中我们就给大家讲讲这些误解,希望能够帮助大家消除误解。
1.机器>人类?
对于人工智能的误解,有的人认为机器是大于人类的,其实并不是这样的,谷歌阿尔法狗战胜韩国棋手李世石的报道被简单地描述成机器战胜人类。这样的表达不是对真实情况的准确描述。更准确的描述是机器加上一群人打败了一个人。并不是机器打败了人类,所以说我们需要消除这种误解,消除这种误解的主要理由是机器和人的技能是互补的。机器在处理结构化计算方面有优势。机器擅长找到特征向量的任务,不太擅长找到其他形式的任务。人类在识别意义和背景上具有得天独厚的优势。人类很容易其他形式的任务,但在找到特征向量方面跟机器相比不具有优势。所以说,正确的框架是要意识到在商业情景下机器和人是互补的。人工智能是人和机器共同工作。而不是只是一个机器。
2.人工智能=机器学习?
人工智能等于机器学习吗?其实并不是这样的,主流媒体带给人们的最后一条根深蒂固的误解就是人工智能和机器学习是等同的。这个误解就导致了不切实际的管理期望从微软,亚马逊或谷歌公司购买商业机器学习的服务就能神奇地将人工智能运用到生产中。而除了机器学习之外还需要训练数据和人机回圈才有可能找到可行的人工智能解决方案。没有人机回圈的机器学习是不会有好的产出的。机器学习模型需要人的参与来去除低的置信度预测。所以人工智能是包括机器学习的,而不是等于机器学习。
相信大家看了这篇文章以后对人工智能有了更深的认识和理解吧?我们在学习人工智能的时候一定要做好关于人工智能知识的储备,有时也需要把以前自己对人工智能的想法归零再出发,很多时候只有放空自己,我们才能够装进新的东西,也才能发掘新的启发或感悟。当然,如果想要更多地了解人工智能,可以通过数据,网络资料以及论文文献的方式去了解,那比很多大肆宣扬的媒体靠谱的多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11