
人工智能的流行使得现在很多自媒体对人工智能大肆渲染,也使得大众对人工智能存在或多或少的一些误解。比如说在人工智能中,机器是大于人类的,这不禁让人感觉到一点点恐慌。其实并不是这样的,在这篇文章中我们就给大家讲讲这些误解,希望能够帮助大家消除误解。
1.机器>人类?
对于人工智能的误解,有的人认为机器是大于人类的,其实并不是这样的,谷歌阿尔法狗战胜韩国棋手李世石的报道被简单地描述成机器战胜人类。这样的表达不是对真实情况的准确描述。更准确的描述是机器加上一群人打败了一个人。并不是机器打败了人类,所以说我们需要消除这种误解,消除这种误解的主要理由是机器和人的技能是互补的。机器在处理结构化计算方面有优势。机器擅长找到特征向量的任务,不太擅长找到其他形式的任务。人类在识别意义和背景上具有得天独厚的优势。人类很容易其他形式的任务,但在找到特征向量方面跟机器相比不具有优势。所以说,正确的框架是要意识到在商业情景下机器和人是互补的。人工智能是人和机器共同工作。而不是只是一个机器。
2.人工智能=机器学习?
人工智能等于机器学习吗?其实并不是这样的,主流媒体带给人们的最后一条根深蒂固的误解就是人工智能和机器学习是等同的。这个误解就导致了不切实际的管理期望从微软,亚马逊或谷歌公司购买商业机器学习的服务就能神奇地将人工智能运用到生产中。而除了机器学习之外还需要训练数据和人机回圈才有可能找到可行的人工智能解决方案。没有人机回圈的机器学习是不会有好的产出的。机器学习模型需要人的参与来去除低的置信度预测。所以人工智能是包括机器学习的,而不是等于机器学习。
相信大家看了这篇文章以后对人工智能有了更深的认识和理解吧?我们在学习人工智能的时候一定要做好关于人工智能知识的储备,有时也需要把以前自己对人工智能的想法归零再出发,很多时候只有放空自己,我们才能够装进新的东西,也才能发掘新的启发或感悟。当然,如果想要更多地了解人工智能,可以通过数据,网络资料以及论文文献的方式去了解,那比很多大肆宣扬的媒体靠谱的多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11