京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能的流行使得现在很多自媒体对人工智能大肆渲染,也使得大众对人工智能存在或多或少的一些误解。比如说在人工智能中,机器是大于人类的,这不禁让人感觉到一点点恐慌。其实并不是这样的,在这篇文章中我们就给大家讲讲这些误解,希望能够帮助大家消除误解。
1.机器>人类?
对于人工智能的误解,有的人认为机器是大于人类的,其实并不是这样的,谷歌阿尔法狗战胜韩国棋手李世石的报道被简单地描述成机器战胜人类。这样的表达不是对真实情况的准确描述。更准确的描述是机器加上一群人打败了一个人。并不是机器打败了人类,所以说我们需要消除这种误解,消除这种误解的主要理由是机器和人的技能是互补的。机器在处理结构化计算方面有优势。机器擅长找到特征向量的任务,不太擅长找到其他形式的任务。人类在识别意义和背景上具有得天独厚的优势。人类很容易其他形式的任务,但在找到特征向量方面跟机器相比不具有优势。所以说,正确的框架是要意识到在商业情景下机器和人是互补的。人工智能是人和机器共同工作。而不是只是一个机器。
2.人工智能=机器学习?
人工智能等于机器学习吗?其实并不是这样的,主流媒体带给人们的最后一条根深蒂固的误解就是人工智能和机器学习是等同的。这个误解就导致了不切实际的管理期望从微软,亚马逊或谷歌公司购买商业机器学习的服务就能神奇地将人工智能运用到生产中。而除了机器学习之外还需要训练数据和人机回圈才有可能找到可行的人工智能解决方案。没有人机回圈的机器学习是不会有好的产出的。机器学习模型需要人的参与来去除低的置信度预测。所以人工智能是包括机器学习的,而不是等于机器学习。
相信大家看了这篇文章以后对人工智能有了更深的认识和理解吧?我们在学习人工智能的时候一定要做好关于人工智能知识的储备,有时也需要把以前自己对人工智能的想法归零再出发,很多时候只有放空自己,我们才能够装进新的东西,也才能发掘新的启发或感悟。当然,如果想要更多地了解人工智能,可以通过数据,网络资料以及论文文献的方式去了解,那比很多大肆宣扬的媒体靠谱的多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30