京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术的发展历程 及其演化趋势_数据分析师
最早提出词汇“Big Data”的是2011年麦肯锡全球研究院发布的《大数据:下一个创新、竞争和生产力的前沿》研究报告。之后,经Gartner技术炒作曲线和2012年维克托·舍恩伯格《大数据时代:生活、工作与思维的大变革》的宣传推广,大数据概念开始风靡全球。
基于Web of Science数据库中1994年后涉及大数据概念的4495篇文献,采用Citespace知识图谱工具,通过热点关键词和高被引文献分析,能够勾勒出大数据技术从萌芽到成熟的发展历程。
上世纪90年代至本世纪初,是大数据发展的萌芽期,处于数据挖掘技术阶段。随着数据挖掘理论和数据库技术的逐步成熟,一批商业智能工具和知识管理技术开始被应用,如数据仓库、专家系统、知识管理系统等。此时,对于大数据的研究主要集中于“Algorithms”(算法)、“Model”(模型)、“Patterns”(模式)、“Identification”(识别)等热点关键词。
大数据发展的突破期是2003至2006年,处于围绕非结构化数据自由探索阶段。非结构化数据的爆发带动大数据技术的快速突破,以2004年Facebook创立为标志,社交网络的流行直接导致大量非结构化数据的涌现,而传统处理方法难以应对。此时的热点关键词较为分散,包括了“Systems”(系统)、“Networks”(网络)、“Evolution”(演化)等,高被引文献也很少,说明学术界、企业界正从多角度对数据处理系统、数据库架构进行重新思考,且尚未形成共识。
2006至2009年,大数据技术形成并行运算与分布式系统,为大数据发展的成熟期。Jeff Dean在BigTable基础上开发了Spanner数据库(2009)。此阶段,大数据研究的热点关键词再次趋于集中,聚焦“Performance”(性能)、“CloudComputing”(云计算)、“MapReduce”(大规模数据集并行运算算法)、“Hadoop”(开源分布式系统基础架构)等。
2010年以来,随着智能手机的应用日益广泛,数据的碎片化、分布式、流媒体特征更加明显,移动数据急剧增长。
近年来大数据不断地向社会各行各业渗透,使得大数据的技术领域和行业边界愈来愈模糊和变动不居,应用创新已超越技术本身更受到青睐。大数据技术可以为每一个领域带来变革性影响,并且正在成为各行各业颠覆性创新的原动力和助推器。
2013年5月,麦肯锡全球研究所(McKinsey Global Institute)发布了一份名为《颠覆性技术:技术进步改变生活、商业和全球经济》的研究报告。报告确认的未来12种新兴技术,有望在2025年带来14万亿至33万亿美元的经济效益。令人惊讶的是,最为热门的大数据技术却未被列入其中。麦肯锡专门解释称,大数据已成为这些可能改变世界格局的12项技术中许多技术的基石,包括移动互联网、知识工作自动化、物联网、云计算、先进机器人、自动汽车、基因组学等都少不了大数据应用。
2014年5月,美国白宫发布了2014年全球“大数据”白皮书的研究报告《大数据:抓住机遇、守护价值》。报告鼓励使用数据以推动社会进步,特别是在市场与现有的机构并未以其他方式来支持这种进步的领域;同时,也需要相应的框架、结构与研究,来帮助保护美国人对于保护个人隐私、确保公平或是防止歧视的坚定信仰。2014年4月,世界经济论坛也以“大数据的回报与风险”的相近主题发布了《全球信息技术报告(第13版)》。报告认为,在未来几年中针对各种信息通信技术的政策甚至会显得更加重要。在接下来将对数据保密和网络管制等议题展开积极讨论。全球大数据产业的日趋活跃,技术演进和应用创新的加速发展,使各国政府逐渐认识到大数据在推动经济发展、改善公共服务,增进人民福祉,乃至保障国家安全方面的重大意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03