京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能是现在十分火热的技术,这是因为人工智能够给我们带来很多的便捷,比如说苹果的Siri、三星的bixby、小米的小爱同学等,这些都给我们的生活中增加了不少的乐趣。而人工智能的核心技术就是机器学习以及深度学习,当然,还涉及到了神经网络的技术。其实这三个技术中,神经网络的技术发展是十分缓慢的,那么到底是为什么呢?下面我们就给大家详细解答一下这个问题。
在上个世纪80年代,通用计算机的出现使得人工神经网络的研究经历了一波复苏。同时,一种算法逐渐成熟,而这个算法就是反向传播。就目前而言,反向传播算法都是训练神经网络的最主要方法。但是,神经网络的规模依然受限于当时的硬件条件而导致规模依然不大。同时,以支持向量机为代表的基于核方法的机器学习技术,表现出了不俗的能力,正是由于这个原因,大量科研人员再一次放弃了神经网络。
在发展神经网络的路上,有两个拦路虎,第一就是计算机的性能,第二就是训练数据不够多。正是由于这个原因,使得神经网络在最初的几十年内都没有表现出过人的性能,实际上,其实在很多的实验室中有这在试验和后来深度神经网络类似的结构,其中一个经典的神经网络结构就是现在的LeNet。但是,增加神经网络的深度,就会让神经网络的训练速度变慢。在那个内存不过几十MB,GPU还没有出现的年代,要训练一个小规模的深度神经网络模型,需要花上数周甚至数月。而训练数据不够多也使得神经网络发展受到了阻碍,而随着特征维度的增加,算法的搜索空间急剧变大,要在这样的特征空间中寻找适合的模型,需要大量的训练数据。神经网络要解决的问题,通常具有成千上万维的特征,维度越高,特征也就越多,可以想象,要在如此大的特征中寻找一个模型,需要多少数据,而这个特征空间规模不过是深度学习问题中比较小的。
当然,我们可以通过一个非常有用的先验假设进行简化,这是因为我们这个世界的事物都是通过更小的事物组合而成的。不仅实际的物体满足这一先验假设,抽象的概念也一样如此。因此深度神经网络利用了这一假设,通过将网络层数加深,每一层神经元都是前面一层神经元输出的组合,通过这样的假设,将整个搜索空间大大减小。然而,训练深度神经网络依然需要大量的数据,才能得到一个比较好的结果。所以说,数据的存量是神经网络发展的前提。
在这篇文章中我们给大家介绍了很多关于人工智能中的神经网络发展缓慢的原因,通过这篇文章我们不难发现,科技从0到1的发展是非常艰难的。不过只要突破了这一个障碍,人工智能就能够得到巨大的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15