
现在大数据可以说是非常火热的,很多年轻人都会选择通过一些学习或者培训来加入到这个行业。但是,大数据的学习其实是比较困难的,这是因为大数据学习中有很多的内容,深浅不一,难度升级,如果想要完全学通基本上是不可能的。那么,在学习大数据的时候有哪些比较实用的建议呢?
一、需要重视的是培训和众包,什么是众包呢?众包是一种基于互联网的创新生产组织形式,企业利用网络将工作分配出去,通过让更合适的人群参与其中来发现创意和解决问题。就目前而言,众包和开源的组合极大推动了IT产业的快速发展,当企业和研究者可在众包上发布数据,数据分析人员可在其上进行竞赛以产生最好的模型。这一众包模式本质就是集体智慧编程的体现,即有众多策略可以用于解决几乎所有预测建模问题,而分析人员不可能一开始就能找到最佳方案,我们通过众包的形式来解决这一难题,进而使数据科学成为一场集体智慧运动。
二、需要大家知道的是,大数据的兴起只是说明了一种现象,随着科技的高速发展,数据在人类生活和决策中所占的比重越来越大。面对如此广度和深度的大数据技术栈和工具集,如何学习和掌握好大数据分析这种技能,这就需要大家根据自身的实际情况进行学习。不过技术的学习和应用也是相通的,条条大路通罗马,关键是要找准切入点,理论与实践结合,有全局观,工程化思维,对复杂系统设计开发与关键技术体系的主要矛盾要有所把握。熟悉大数据基础理论与算法、应用切入、以点带面、举一反三、横向扩展,从而构建完整的大数据知识结构和核心技术能力,这样的学习效果就会好很多。
当然,技术发展也遵循量变到质变规律,我们都知道,人工智能、物联网、大数据、云计算是四位一体发展的,未来智能时代的基础设施、核心架构将基于这四个层面,这种社会演化趋势也很明显。从农业时代到工业时代,再到互联网时代,然后就是智能化时代。在这个四位一体智能技术链条里面,物联网重在数据采集,云计算重在基础设施,大数据技术处于核心地位,人工智能则是发展目标,所以学习大数据技术还需要对这四个方面加以综合研究和理解。这样才能够学好大数据。
总的来说,大数据学习是一个持续不断的过程,无论是参加课程还是自学,都只是让我们具备进入这个行业的基本条件,个人思维的锻炼和提升也要并驾齐驱,不能单单是一味被灌输知识而不自己思考。希望小编的这篇文章能对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29