京公网安备 11010802034615号
经营许可证编号:京B2-20210330
刚入门数据分析,学了好几个软件,学了好多个模型,但是不是还有问题困扰着你呢?
1. 你是不是接触到N多数据,却一脸懵B,啥都分析不出来?
2. 即使分析出来了一堆结果,却不知道如何解读?
3. 可视化报告一塌糊涂,决策层完全不懂你分析的结果?
这三个问题咱们先存疑,后面会给大家一个满意的答复。
玩过吃鸡的朋友应该知道,这个游戏玩法多样。你可以当伏地魔一直苟进决赛圈,你也可以通过高超的枪法钢到吃鸡。经验丰富的小伙伴更是知道什么情况用什么武器,并且准确的预测到最后缩圈的位置。
新手刚入门,玩了几局之后就会想到这几个问题。
l 飞机嗡嗡地,我到底跳哪里比较安全?
l 我是该苟着不动,还是应该出去猛干?
l 是该单打独斗还是跟队友一起配合?
l 毒来了我跑不过毒怎么办啊?
l 什么武器最有用?
l 近战适合使用什么武器,狙击适合使用什么武器呢?
l 最后的毒圈一般会在哪里呢?
上述的分析思路你认可吗?其实每个问题与数据分析相关。
l 飞机嗡嗡地,我到底跳哪里比较安全? ——前五分钟内死亡坐标的区域热力图
l 我是该苟着不动,还是应该出去猛干?——横:击杀人数,纵:吃鸡概率条形图
l 是该单打独斗还是跟队友一起配合?——横:助攻,纵:吃鸡概率 条形图
l 毒来了我跑不过毒怎么办啊?——横:吃鸡概率,纵:是否乘坐过车辆条形图
l 什么武器最有用?——横:被击杀人数总和,纵:击杀的武器类型 条形图
l 近战适合使用什么武器,狙击适合使用什么武器呢?横:武器类型,纵:被击杀的人数 条形图
l 最后的毒圈一般会在哪里呢?——最后毒圈位置坐标的区域热力图
如果你玩过吃鸡,即便你不懂数据分析,这份数据分析报告的分析思路你也一定可以看懂。这几个问题实际上意味着我们要懂这份数据源的各项指标的含义(横纵坐标的含义)。
我们再回头看第一个问题:“你是不是接触到N多数据,却一脸懵B,啥都分析不出来?”
当你拿到一份全新的数据源,第一时间去了解各项指标的含义,理清楚思路。让自己不再懵逼,不再头大。
接下来我们回答第二个问题,
分析出来了一堆结果,却不知道如何解读?
答案:我们要明白这份数据源分析背后的业务/商业逻辑(分析思路是啥意思,为什么要做这个分析)
我个人觉得,这个问题是一个很严肃,并且关系到你职业生涯的一个问题。说白了你要构建自己的商业思维。业务sense是非常重要的能力,这需要你多积累经验,要多看一些商业案例和优秀的数据分析报告。对于新手而言,分析框架是一个很好的东西,本来商业价值就是用户做出一系列动作之后实现的,都是有章法可循的,明白了其中章法,就不会出现过于依赖自己的经验和感觉,从而出现思维枯竭的情况了。并且你在分析出结果之后,因为你了解每一个指标的含义,又了解到和业务结合时需要关注哪一项指标,应该如何提升/降低这项指标,提升/降低指标会对公司业务造成哪些影响,所以你再做解读结果并且出分析报告的时候,就知道自己应该侧重写那些内容了。
举个例子:某家公司的领导发现公司对于潜在客户的收集和分析非常缺失,比较影响公司的营业额。需要你做一份分析。这个时候如果你的经验足够丰富,你会想到从销售的角度出发,去相关网站爬去数据,通过地域、规模、员工人数等方面去分析,最终找到了最有可能购买公司产品的潜在客户。
当然这是一个很简单的例子。但是,如果一个分析师对销售,对公司业务完全不了解的情况下,还能做的出来吗?
第三个问题,分析报告一塌糊涂,决策层完全看不懂?
答案:从公司的战略入手,巧用可视化工具并与解读结果结合。
很多数据分析师在一开始入职,仅仅把自己当做一个职场员工来工作。没资格也没有必要考虑公司战略的问题。可是领导需要你出报告的时候,他就是想让你告诉他在公司现在的发展阶段,怎么让公司利润最大化。
所以一个数据分析师最本质的价值就是去用数据驱动业务增长。
而每一项业务本质上是公司整体战略的支撑,
你要充分理解公司的战略,并学会如何从战略层面思考工作。
举个例子,公司在快速扩张的时期,所有的业务目标就是为了快速壮大。而你这个时候去研究如何降低公司成本,及时你的数据分析结果在准确,给到的建议最清晰,但对当下发展的公司而言,作用几乎为0 。
另外一点很重要的是,巧用可视化工具。目前市面上可视化工具还是比较多。有自主研发的一般是人家公司的产品,要收费的。也可以用Tableau,Excel BI等。学好一款可视化工具,可以让你的报告更加美观,更加专业。
以上三个问题的答案你都清楚了吗?希望大家可以月薪翻倍年薪翻倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21