京公网安备 11010802034615号
经营许可证编号:京B2-20210330
刚入门数据分析,学了好几个软件,学了好多个模型,但是不是还有问题困扰着你呢?
1. 你是不是接触到N多数据,却一脸懵B,啥都分析不出来?
2. 即使分析出来了一堆结果,却不知道如何解读?
3. 可视化报告一塌糊涂,决策层完全不懂你分析的结果?
这三个问题咱们先存疑,后面会给大家一个满意的答复。
玩过吃鸡的朋友应该知道,这个游戏玩法多样。你可以当伏地魔一直苟进决赛圈,你也可以通过高超的枪法钢到吃鸡。经验丰富的小伙伴更是知道什么情况用什么武器,并且准确的预测到最后缩圈的位置。
新手刚入门,玩了几局之后就会想到这几个问题。
l 飞机嗡嗡地,我到底跳哪里比较安全?
l 我是该苟着不动,还是应该出去猛干?
l 是该单打独斗还是跟队友一起配合?
l 毒来了我跑不过毒怎么办啊?
l 什么武器最有用?
l 近战适合使用什么武器,狙击适合使用什么武器呢?
l 最后的毒圈一般会在哪里呢?
上述的分析思路你认可吗?其实每个问题与数据分析相关。
l 飞机嗡嗡地,我到底跳哪里比较安全? ——前五分钟内死亡坐标的区域热力图
l 我是该苟着不动,还是应该出去猛干?——横:击杀人数,纵:吃鸡概率条形图
l 是该单打独斗还是跟队友一起配合?——横:助攻,纵:吃鸡概率 条形图
l 毒来了我跑不过毒怎么办啊?——横:吃鸡概率,纵:是否乘坐过车辆条形图
l 什么武器最有用?——横:被击杀人数总和,纵:击杀的武器类型 条形图
l 近战适合使用什么武器,狙击适合使用什么武器呢?横:武器类型,纵:被击杀的人数 条形图
l 最后的毒圈一般会在哪里呢?——最后毒圈位置坐标的区域热力图
如果你玩过吃鸡,即便你不懂数据分析,这份数据分析报告的分析思路你也一定可以看懂。这几个问题实际上意味着我们要懂这份数据源的各项指标的含义(横纵坐标的含义)。
我们再回头看第一个问题:“你是不是接触到N多数据,却一脸懵B,啥都分析不出来?”
当你拿到一份全新的数据源,第一时间去了解各项指标的含义,理清楚思路。让自己不再懵逼,不再头大。
接下来我们回答第二个问题,
分析出来了一堆结果,却不知道如何解读?
答案:我们要明白这份数据源分析背后的业务/商业逻辑(分析思路是啥意思,为什么要做这个分析)
我个人觉得,这个问题是一个很严肃,并且关系到你职业生涯的一个问题。说白了你要构建自己的商业思维。业务sense是非常重要的能力,这需要你多积累经验,要多看一些商业案例和优秀的数据分析报告。对于新手而言,分析框架是一个很好的东西,本来商业价值就是用户做出一系列动作之后实现的,都是有章法可循的,明白了其中章法,就不会出现过于依赖自己的经验和感觉,从而出现思维枯竭的情况了。并且你在分析出结果之后,因为你了解每一个指标的含义,又了解到和业务结合时需要关注哪一项指标,应该如何提升/降低这项指标,提升/降低指标会对公司业务造成哪些影响,所以你再做解读结果并且出分析报告的时候,就知道自己应该侧重写那些内容了。
举个例子:某家公司的领导发现公司对于潜在客户的收集和分析非常缺失,比较影响公司的营业额。需要你做一份分析。这个时候如果你的经验足够丰富,你会想到从销售的角度出发,去相关网站爬去数据,通过地域、规模、员工人数等方面去分析,最终找到了最有可能购买公司产品的潜在客户。
当然这是一个很简单的例子。但是,如果一个分析师对销售,对公司业务完全不了解的情况下,还能做的出来吗?
第三个问题,分析报告一塌糊涂,决策层完全看不懂?
答案:从公司的战略入手,巧用可视化工具并与解读结果结合。
很多数据分析师在一开始入职,仅仅把自己当做一个职场员工来工作。没资格也没有必要考虑公司战略的问题。可是领导需要你出报告的时候,他就是想让你告诉他在公司现在的发展阶段,怎么让公司利润最大化。
所以一个数据分析师最本质的价值就是去用数据驱动业务增长。
而每一项业务本质上是公司整体战略的支撑,
你要充分理解公司的战略,并学会如何从战略层面思考工作。
举个例子,公司在快速扩张的时期,所有的业务目标就是为了快速壮大。而你这个时候去研究如何降低公司成本,及时你的数据分析结果在准确,给到的建议最清晰,但对当下发展的公司而言,作用几乎为0 。
另外一点很重要的是,巧用可视化工具。目前市面上可视化工具还是比较多。有自主研发的一般是人家公司的产品,要收费的。也可以用Tableau,Excel BI等。学好一款可视化工具,可以让你的报告更加美观,更加专业。
以上三个问题的答案你都清楚了吗?希望大家可以月薪翻倍年薪翻倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26