京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在深度学习受到了大家的青睐,这是因为深度学习有很多实用的技术,而这些技术都有值得我们学习的知识。所以现在有很多人都去学习深度学习,但是在学习深度学习过程中有两个问题需要我们去考虑,那么这两个问题到底是什么呢?下面我们就给大家介绍一下这两个问题。
深度学习需要考虑的两个问题就是如何在样本数量有限的数据集上训练算法,以便让它们在能够完全捕捉真实世界复杂度的无限大数据集上也能发挥出好的表现;第二个问题就是如果我们手中只有有限的数据集,我们要如何高效地测试这些算法才能确保它们在无限大数据集上也有好的表现。
这就涉及到了克服组合问题,有一些目前形式的数据驱动方法比如深度神经网络类似的方法,其实有时候我们可能永远也无法完善解决组合爆炸的问题。其实还有一些比较有潜力的方法,那就是在组合性的数据上进行测试,下面我们就给大家介绍一下这种方法。
在克服组合问题上,在组合性的数据上测试是一个好办法,测试视觉算法的一个潜在的挑战是我们只能在有限的数据上测试,即便我们测试的算法是为了解决真实世界中巨大的组合复杂度而设计的。博弈论中对这种问题的思考方式是关注于那些最糟糕的情况解决得如何,而不那么关注平均难度的状况解决得如何。而有限数据集中的平均难度的结果意义并不高,尤其是当数据集无法完全捕捉到问题的组合复杂性的时候。更为关注最糟糕的情况当然是有一定理由的,我们都知道,失误都是更容易在复杂的情况下出现,出现以后也更可能带来严重的后果。
如果失效模式可以在低维空间中捕捉到,比如可以缩小到只有两三个因素的影响,我们就可以通过计算机图形学和网格搜索的方法进行研究。但是对于多数视觉任务,尤其是涉及组合性数据的任务,我们就很难分辨出来一小组影响因素并独立地研究它们。一种策略是在标准的对抗性训练的基础上进行拓展,让它也可以作用于非局部的结构,方法是允许模型对图像的主要结构、场景做复杂的操作,但同时不显著改变人类的观感。把这种方法拓展到视觉算法用来解决组合复杂度的问题仍然有不小挑战。不过,如果我们设计算法的时候心里就注意着复合性的事情,它们的显式结构也可以让我们更方便地进行诊断并判断它们是如何失效的。
通过这篇文章我们不难看出深度学习中需要思考的两个问题都是值得我们深思的,同时从侧面上也可以说明深度学习还有很长的路要走。相信在未来,深度学习能够帮助我们解决更多的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15