京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析工作是一项很有成就感的工作,我们在做好了数据分析工作就需要将这些数据分析结果呈现给大家,而一般来说,很多客户和领导不是数据分析专业的人,如果我们直接把数据分析结果让他们看是一件不现实的事情。这就需要我们做到数据可视化,我们应该意识到一个问题,那就是我们尽量使用图表的方式代替文字表达,这是因为人们对于图表表达的直观度比文字表达的直观度要高,所以也就有了怎么一句话,那就是字不如表,表不如图。所以我们就需要学习数据可视化的技能。
在数据分析中有很多的知识是需要我们学习的,比如Excel、数据库、以及数据可视化的知识,通过这些知识的讲解我们发现数据分析师需要学习的内容还是有很多的。而数据分析中的统计知识也是一个十分重要的知识,如果学习的数据分析中的统计知识,这就能够帮助大家构建一个完整的数据分析知识体系,那么数据分析中的统计知识是如何学习的呢?下面我们就给大家详细的介绍一下这些知识。
现如今,很多数据分析师统计学基础知识并不是很重视,对统计知识不屑一顾,其实这是一种错误的做法,在数据分析知识中,统计学的地位也是不容忽视的,如果在分析数据的时候没有了统计学,那么分析数据就不那么准确了。如果相关人员不清楚某种事物的置信度的含义和概念,那么就不能够分析出一个完整的数据。如果不了解统计学的数据分析师,往往是一个粗糙的分析师。如果你想要往机器学习发展,那么统计学更是需要掌握的基础。
就目前而言,很多人都喜欢用平均数去分析一个事物的结果,但是这往往不是准确的,如果学习了统计学,那么我们就能够以另一个角度看待数据。毕竟很多数据分析的决策并不牢靠。我们统计学里面还需要学习描述统计中的诸多变量,比如平均数、中位数、众数、分位数、标准差、方差。这些统计标准会让新手分析师从平均数这个不靠谱的泥潭中出来。如果将统计学和数据可视化相结合,那么这就是对数据的分布进行一个直观的概念讲解。这是因为很多特定的模型都有自有的数据分布图,这些分布图有很多,比如直方图和箱线图,如果掌握了这些分布图的好处,那么就是对数据分析有极大的帮助。由此可见,直方图和箱线图会是长久伴随分析师的利器。要学好统计学,或者要利用好统计学,那么一定要重视概率论的研究,统计学的一大重要分支是概率论,概率是度量一件事发生的可能性,它是介于0到1之间的数值。很多事情,都可以用概率论解释,概率论包括贝叶斯公式、二项概率、泊松概率、正态分布等理论。这些理论在数据分析中都会用得到。
从这篇文章中我们可以看出,统计学是一个很广阔的领域,涉及到各方各面,尤其是包括方差分析,时间序列等,都有各自不同的应用。所以说大家不能够忽视统计知识的应用,希望这篇文章能够更好的帮助大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15