京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析工作是一项很有成就感的工作,我们在做好了数据分析工作就需要将这些数据分析结果呈现给大家,而一般来说,很多客户和领导不是数据分析专业的人,如果我们直接把数据分析结果让他们看是一件不现实的事情。这就需要我们做到数据可视化,我们应该意识到一个问题,那就是我们尽量使用图表的方式代替文字表达,这是因为人们对于图表表达的直观度比文字表达的直观度要高,所以也就有了怎么一句话,那就是字不如表,表不如图。所以我们就需要学习数据可视化的技能。
在数据分析中有很多的知识是需要我们学习的,比如Excel、数据库、以及数据可视化的知识,通过这些知识的讲解我们发现数据分析师需要学习的内容还是有很多的。而数据分析中的统计知识也是一个十分重要的知识,如果学习的数据分析中的统计知识,这就能够帮助大家构建一个完整的数据分析知识体系,那么数据分析中的统计知识是如何学习的呢?下面我们就给大家详细的介绍一下这些知识。
现如今,很多数据分析师统计学基础知识并不是很重视,对统计知识不屑一顾,其实这是一种错误的做法,在数据分析知识中,统计学的地位也是不容忽视的,如果在分析数据的时候没有了统计学,那么分析数据就不那么准确了。如果相关人员不清楚某种事物的置信度的含义和概念,那么就不能够分析出一个完整的数据。如果不了解统计学的数据分析师,往往是一个粗糙的分析师。如果你想要往机器学习发展,那么统计学更是需要掌握的基础。
就目前而言,很多人都喜欢用平均数去分析一个事物的结果,但是这往往不是准确的,如果学习了统计学,那么我们就能够以另一个角度看待数据。毕竟很多数据分析的决策并不牢靠。我们统计学里面还需要学习描述统计中的诸多变量,比如平均数、中位数、众数、分位数、标准差、方差。这些统计标准会让新手分析师从平均数这个不靠谱的泥潭中出来。如果将统计学和数据可视化相结合,那么这就是对数据的分布进行一个直观的概念讲解。这是因为很多特定的模型都有自有的数据分布图,这些分布图有很多,比如直方图和箱线图,如果掌握了这些分布图的好处,那么就是对数据分析有极大的帮助。由此可见,直方图和箱线图会是长久伴随分析师的利器。要学好统计学,或者要利用好统计学,那么一定要重视概率论的研究,统计学的一大重要分支是概率论,概率是度量一件事发生的可能性,它是介于0到1之间的数值。很多事情,都可以用概率论解释,概率论包括贝叶斯公式、二项概率、泊松概率、正态分布等理论。这些理论在数据分析中都会用得到。
从这篇文章中我们可以看出,统计学是一个很广阔的领域,涉及到各方各面,尤其是包括方差分析,时间序列等,都有各自不同的应用。所以说大家不能够忽视统计知识的应用,希望这篇文章能够更好的帮助大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27