京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果您计划成为一名数据分析师,目标是提升数据获取、数据分析、数据可视化的水平。但是网上资料一大堆,完全零基础的你从哪开始学习?视频下载了很多,无法坚持学习? 经常遇到问题,却得不到及时解决,浪费大量宝贵时间。CDA数据分析研究院的老师指导您零基础入门数据分析,以下将针对零基础学员介绍数据分析的流程。
第一:锻炼数据分析思维
核心数据分析思维:
1.结构化:
也叫做金字塔思维,把需要分析的问题按照不同方向分类,然后不断拆分细化问题,全方位思考问题。首先把所有能想到的论点先列出来,然后再整理归纳成金字塔模型。可以用思维导图整理分析思维。
2.公式化:
以上整理出来的论点往往会存在数量关系,使用加减乘除计算,将这些论点进行量化分析,从而验证论点。
3.业务化:
业务化指熟悉业务情况,结合该项目具体业务进行分析,并且能让分析结果进行落地执行。用结构化思考+公式化拆解得出的最终分析论点表示的是一种现象,不能体现产生结果的原因。所以需要继续去用业务思维去思考,站在业务人员或分析对象的角度思考问题,深入研究出现这种现象的原因或者通过数据推动业务。
增加业务思维方法:贴近业务,换位思考,积累经验
数据分析的思维技巧:
在数据分析中,三种核心数据分析思维是框架型的指引,实际应用中还是需要很多技巧。7种数据分析技巧,分别是象限法,多维法,假设法,指数法,二八法,对比法,漏斗法。
第二:统计学知识准备
数据分析要求数据分析员有一定的统计学基础,包括对数据进行简单的统计分析,进而从数据中发现问题解决问题。推荐书籍:《线性代数应该这样学》,《普林斯顿微积分读本》,《统计学》(贾俊平著),《统计推断》
对于数据分析师来说,以下部分是这四天最重要的:函数,线性变换,导数及其应用,矩,抽样分布,最大似然估计,假设检验,线性回归。因此请同学们集中精力优先攻克以上内容。
对于数学基础薄弱的同学,学习有以下难点:
1.长时间没有接触和使用数学,尤其大学学过的知识时间太长遗忘太多,导致计算能力偏弱。
2.数学思维仍保持在初等数学范畴,导致无法理解课程中的一些概念与公式。
3.学过的概念与计算很快就忘掉了,导致以后无法应用这两天所学的知识。
CDA老师给大家提供的解决方案:
1.做好预习工作。对于基础不是很好的同学,从网上找一些高中数学的知识点梳理,看一遍就能快速回忆起之前所学。
2.高等数学由于引入了极限等概念,确实会有一些反直觉的知识存在。建议同学们保持多角度获取知识的好习惯,遇到不会的知识点尝试去搜索各种角度的解释。很多时候当思考角度改变的时候会有茅塞顿开的感觉。
3.数学是需要练习的,请大家一定花时间自己动手推导与计算。
第三:使用Excel进行数据分析
对于没有经验的你,Excel是一款必须熟练的工具。它是日常工作中最常用的工具,如果不考虑性能和数据量,它可以应付绝大部分分析工作。CDA数据分析研究院的老师整理了excel在数据分析中主要用到的功能如下图:
第四:使用SQL进行数据分析
在数据分析的招聘中,SQL是必考的能力之一。为什么要学SQL呢? Excel对十万条以内的数据处理起来没有问题,但是在大数据时代,数据量比较大,公司的数据都放在数据库中,这时候就需要学习操作数据库的语言SQL。
数据分析师需要掌握SQL的查询功能和利用SQL进行简单的数据分析。
第五:选择一门编程语言
Python或者R语言,这一点是必备项也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。
对于R和Python,我们应该使用哪种语言,已经争论很多年了,至今没有定论...... 事实大概是Python的主要功能是编程,除了单纯的数据分析,在很多领域还有广泛利用,所以就业市场上对Python的需求是远大于R。
R主要侧重统计功能,在统计方面显示出了很多的优势,用R做单纯的数据分析还是妥妥的稳稳的。但是往数据科学方向走的话,R就有点顶不住了,轮到Python扬眉吐气了......
是否具备编程能力,是初级数据分析和高级数据分析的风水岭。数据挖掘、BI、爬虫、可视化报表都需要用到编程。以下以python介绍语言学习的路径:
Python则是万能的胶水语言,适用性强,可以将分析的过程脚本化。Pandas、Numpy、SKLearn等包也是非常丰富。Python学习导图:
第六:业务知识
Excel,sql语言,统计学,编程语言都学习完之后,你是否有这样的困惑:知道excel、sql,却不知道该如何分析问题?手里拿了一堆数据,却不知道怎么分析?业务部门不满意,总觉得分析不深入?面试中针对一个企业的数据分析场景应该怎么去分析?没有工作经验不懂怎么结合企业业务做系统的分析? 不管是面试,还是工作中,业务知识是必须的内容。业务的洞悉决定了数据分析师发展的上限,数据技巧只是逼近它。好的分析师都懂业务,也必须懂业务。
按照以上六点坚持学习,零基础的你会很快打开数据分析的学习道路。CDA数据分析研究院老师也会帮助您了解更多关于数据分析的学习方法,帮助您在数据分析道路上少走弯路,快速学习数据分析思维,早日成为一名数据分析师。不要惧怕零基础,不要担心自己不行,只要有心开始,一切不算太迟——我信故我在,我信故我成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16