京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代大数据本身的安全成为一个新的安全挑战,但与此同时大数据技术也为信息安全技术的发展起到极大推动作用,例如数据可视化技术和方法的引入可以大大提高信息安全的预防、侦测和事件响应等环节的效率。俗话说一图抵万言,本文我们将介绍高效信息安全团队常用的八种数据可视化方法。
一、层级树状图(Hierarchical Tree Map)
层级树状图能以空间顺序非常直观地展现排名,例如展示IP地址和面向对象设计的类库等。层级树状图的单元通过颜色、尺寸和位置的不同体现排名。WatchGuard通过以上这个层级树状图来高亮流量中有关活跃用户及其连接最关键的信息,而且还能进一步细分和过滤。
二、关系图 Link Charts
关系图的繁简程度视具体需要而定,主要功能是用于展示不同实体之间的关系,这在分析网状关系时非常有用。在安全分析领域,关系图能够有助更好地理解欺诈交易和网络监控数据。
三、图形匹配(Graph Pattern Matching)
图形匹配能快速发现行为趋势。例如在21CT的这张可视图表中,恶意数据抽取行为一目了然,外部机器(标记为旗帜)试图访问的内部机器(蓝色终端)闪电图形将触发警报。
四、3D可视化
3D可视化能够直观展示复杂攻击关系,大大节省安全分析人员的事件。例如,OpenDNS的研究人员通过3D建模观察赎金木马Cryptolocker的多个域,来判断该木马造成的危害范围。
五、时间线
取证专家在分析事件时可借助时间线这种可视化方式更好地了解时间按的发展进程。虽然并非安全专用工具,但是i2的Analyst Notebook产品,提供了时间线功能(上图),以及其他一系列可视化工具。
事实上i2的很多可视化工具完全可以为网络安全专家和情报专家在分析中使用。
六、地理信息可视化
基于地图的可视化方法有助于安全运营中心和研究人员标记地理攻击模式。例如Arbor网络的DDoS攻击地图,通过与Google Ideas的合作,以可视化互动的方式展示DDoS攻击的历史和趋势(数据来自Arbor网络的ATLAS全球威胁监控系统)。
七、平行坐标标记(Parallel Coordinate Plots)
平行坐标标记能有效处理网络分析产生的大数据集,是非常强大的网络数据的可视化方法。上图是安全可视化专家Raffeal Marty绘制的网络日志数据图。
八、标准图表
虽然可视化技术听上去很酷,但是普通的标准图表的影响力不容忽视,例如柱状图、饼图、流程图等等,灵活使用也能发挥巨大作用。本文来自:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20