京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与数据分析的出现推动了很多行业的发展,比如商业、工业、农业、金融业等等,而在金融行业中,很多东西都是需要大数据分析以及挖掘的,比如客户关系管理、风险计量与管理、精准营销、交易执行、安全与反欺诈等,正是这些才能够实现金融行业的迅速发展,那么数据挖掘给金融行业带来了什么呢?在这篇文章中我们就给大家介绍一下这些事情。
可以说,大数据的出现使得金融行业得到了转型,主要体现在了在实现严格有效的监管、机构精细化管理、业务创新提高竞争力等三大方面。而大数据技术正是实现这些目标的扎实基础。当然,大数据不仅为金融机构掌握客户全方位信息提供了可能,通过大数据技术分析和挖掘客户的交易和消费历史掌握客户的消费行为与习惯,并准确地预测客户的需求,有方向性地提供推荐和服务,能够提升客户满意度。另一方面,大数据技术能通过跟踪新闻、微博等典型的非结构化、半结构化数据搜集政治、经济等方面的变化对市场的影响。这些非结构化数据、半结构化数据经过处理后能够转化成结构化数据,并参与到自动交易的决策辅助中来。由此可见大数据为金融行业的转型带来了极大的帮助。
而数据挖掘的任务一般有三个,分别是分类、聚类、关联规则,由于不同的数据形式同这三个方面的结合又产生了一些交叉领域。常见的分类任务算法有:决策树、logistic回归、神经网络、支持向量机、多目标线性规划等。而Logistic 回归分析是一种二分类的多元回归方法,是判断某件事情是否发生的传统工具,在各个领域都取得了较为广泛的应用。人工神经网络具有自学习和自适应能力,可通过预先提供的一批相互对应的输入—输出数据,分析掌握两者间的规律进行应用和预测。最流行的神经网络算法是20 世纪80 年代提出的向后传播算法。
在这篇文章中我们给大家介绍了大数据以及数据挖掘给金融行业带来的相关业务,数据挖掘的算法有很多,由于篇幅原因我们就给大家介绍了两种,在后面的文章我们继续给大家介绍更多的算法,好了,我们下一期再见。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08