京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析行业中,数据挖掘是一种发现规律的手段。在传统行业中,数据挖掘是一个过程十分冗长的东西,在数据获取中数据挖掘就成了企业中的一项重要工作。很多数据挖掘师在进行数据挖掘工作的时候往往会感觉吃力,感觉自己的数据挖掘能力不够好,想要提高数据挖掘能力,那么怎么提高数据挖掘能力呢?下面我们就给大家讲一讲。
提高数据挖掘工作有很多方面,比如挖掘引擎数据准备、训练方法、迭代方式、产品思维等方面,下面我们就根据这些方面进行给大家讲述这些内容。
要想提高数据挖掘能力,就需要我们打造全流程挖掘引擎,在很多企业中的机器学习平台逐步形成了一个自有生态,其机器学习引擎一般是跟企业的整个IT环境无缝集成的,无论是在数据准备、数据输入、算法选择、模型训练、模型输出或是生产部署等各个阶段。而商用的数据挖掘引擎则一般只能做点的事情,强调的是算法的多样选择及模型训练的可视化体验,在数据准备、数据输入、模型输出、生产发布等数据挖掘的其它阶段是游离在之外的,需要跟企业的数据环境进行交互才能完成一个数据挖掘过程,而这些交互一般不是自动的,也不具备可视化能力,这造成了整个数据挖掘流程的割裂,而企业在这些阶段花费的代价是很大的。所以我们就需要开发一种新的方案去解决这个问题。
就目前而言,随着一般算法使用门槛的降低,当前商用挖掘引擎都在朝着人工智能算法和海量计算平台化方向转变,但其并不会变得更敏捷,因为整个流程仍然是割裂的。这种问题怎么解决呢?有两种方法,第一种就是把全部数据上云,第一种就是自己定制,也就是说
将通用的数据挖掘引擎跟企业自身的数据开发管理平台无缝集成,复用原有企业的数据开发整个流程,这种方案的价值点就在于以企业的数据开发流程为核心,而不是数据挖掘为核心,数据挖掘只是作为一个组件集成进来,最大限度的复用原有数据管理的能力。所以说,企业使用商用数据的时候还需要考虑其开放性,这样才能够避免这些事情。
在这篇文章中我们给大家解答了提高数据挖掘能力的其中一种,而提高数据挖掘能力的方法有很多,我们会在下一篇文章中继续给大家讲解这些知识。欢迎大家关注我们,精彩内容不容错过。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26