京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据预测日渐流行,应用普及为何比准确率更重要
毋庸置疑,对大数据的讨论已经成为当前IT界的重要议题,原因在于,大数据未来会在非常广泛的领域扮演重要角色,比如股票、广告等与数据密切相关的领域,而在一些社会问题上,大数据也将提供解决方案,比如疾病预防、春运分析等等。总的来说,大数据时代已经全面来临。
从理论上讲,大数据主要是对过去的数据进行分析和统计,通过一定的模型来预测未来某些事件的走势。比如在今年巴西世界杯期间,百度、谷歌、微软和高盛等巨头对全部64场比赛的胜负结果,以及冠军和黑马进行了预测。然而,无论是四分之一决赛还是16强淘汰赛,百度预测结果准确率都达到100%,甚至比高盛和谷歌的精准度还要高出很多。
那么百度为什么会在这方面超过其他几家呢?刚才提到,在大数据领域,模型非常重要,预测结果是否准确取决于预测模型是否给力,正是因为几家巨头采用了不同的预测模型,才导致了预测结果相差甚远。从这个案例上,我们不难看出百度在大数据预测方面已经取得了不俗的成绩。有专家认为,随着大数据技术的不断发展,对重大事件的预测在精准度上将得到不断提升,但由于大数据涉及的问题太复杂,因此,也可能出现预测不准,误差较大的情况。比如,百度在9月底推出的电影票房预测首次试水便出现了一定的偏差,这是为何?
结合专家的观点来看,应该说,出现这样的乌龙事件并不奇怪,百度电影票房预测毕竟是首次试水,在模型方面也许还存在一些需要完善的地方。只有通过不断的实践和总结,对模型进行调整和改进,其预测的精准度才会不断的得到提升。
类似的情况在其他互联网巨头身上也有所体现,此前Google流感趋势曾成功预测出美国、德国、比利时等国的流感爆发;但同样是Google流感趋势,在对包括 2011年的美国流感,2008年的瑞士流感进行预测时,就过高估计了流感的病例数量,显得非常不靠谱。
对大数据而言,虽然预测的精准度是大家关心的重要问题,但还有一点更重要,就是对大数据持续发展的推动,并且尽最大可能普及大数据应用。在这个问题上,外界应该持拥抱、参与、支持的态度,而不是一叶障目的挑剔与奚落。
在这方面,百度也显得非常“淡定”,虽然在首次票房预测上摆了一道乌龙,但百度对大数据应用推广和普及所做的贡献是非常突出的。百度除了利用大数据对疾病和世界杯进行预测,还和联合国开发计划署合作,共建大数据联合实验室。据悉,该联合实验室的工作重点是利用百度的大数据技术对行业数据进行分析加工和趋势预测,为联合国制定发展策略提供建议。实验室现阶段的研究重点是环保和健康领域,未来还将聚焦教育和灾害管理等议题。
在商业化方面,百度也积极和其他企业合作,推动大数据在商业层面的应用。比如百度和万达、腾讯合作,建立大数据联盟,实现优势资源大数据融合,共同打造线上线下一体化的用户体验。又比如,广发银行携手百度,通过大数据深挖客户需求,更好的为客户服务。这些案例都是大数据在商业领域的经典应用。
应该说,大数据对社会发展的意义是非常重要的,它将驱动传统产业的升级和创新,带来多元化的价值。在这种背景下,百度等巨头活跃在大数据领域,致力于通过大数据为经济发展、社会发展提供多层面的支持,这种精神是值得肯定和鼓励的。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03