
大数据预测日渐流行,应用普及为何比准确率更重要
毋庸置疑,对大数据的讨论已经成为当前IT界的重要议题,原因在于,大数据未来会在非常广泛的领域扮演重要角色,比如股票、广告等与数据密切相关的领域,而在一些社会问题上,大数据也将提供解决方案,比如疾病预防、春运分析等等。总的来说,大数据时代已经全面来临。
从理论上讲,大数据主要是对过去的数据进行分析和统计,通过一定的模型来预测未来某些事件的走势。比如在今年巴西世界杯期间,百度、谷歌、微软和高盛等巨头对全部64场比赛的胜负结果,以及冠军和黑马进行了预测。然而,无论是四分之一决赛还是16强淘汰赛,百度预测结果准确率都达到100%,甚至比高盛和谷歌的精准度还要高出很多。
那么百度为什么会在这方面超过其他几家呢?刚才提到,在大数据领域,模型非常重要,预测结果是否准确取决于预测模型是否给力,正是因为几家巨头采用了不同的预测模型,才导致了预测结果相差甚远。从这个案例上,我们不难看出百度在大数据预测方面已经取得了不俗的成绩。有专家认为,随着大数据技术的不断发展,对重大事件的预测在精准度上将得到不断提升,但由于大数据涉及的问题太复杂,因此,也可能出现预测不准,误差较大的情况。比如,百度在9月底推出的电影票房预测首次试水便出现了一定的偏差,这是为何?
结合专家的观点来看,应该说,出现这样的乌龙事件并不奇怪,百度电影票房预测毕竟是首次试水,在模型方面也许还存在一些需要完善的地方。只有通过不断的实践和总结,对模型进行调整和改进,其预测的精准度才会不断的得到提升。
类似的情况在其他互联网巨头身上也有所体现,此前Google流感趋势曾成功预测出美国、德国、比利时等国的流感爆发;但同样是Google流感趋势,在对包括 2011年的美国流感,2008年的瑞士流感进行预测时,就过高估计了流感的病例数量,显得非常不靠谱。
对大数据而言,虽然预测的精准度是大家关心的重要问题,但还有一点更重要,就是对大数据持续发展的推动,并且尽最大可能普及大数据应用。在这个问题上,外界应该持拥抱、参与、支持的态度,而不是一叶障目的挑剔与奚落。
在这方面,百度也显得非常“淡定”,虽然在首次票房预测上摆了一道乌龙,但百度对大数据应用推广和普及所做的贡献是非常突出的。百度除了利用大数据对疾病和世界杯进行预测,还和联合国开发计划署合作,共建大数据联合实验室。据悉,该联合实验室的工作重点是利用百度的大数据技术对行业数据进行分析加工和趋势预测,为联合国制定发展策略提供建议。实验室现阶段的研究重点是环保和健康领域,未来还将聚焦教育和灾害管理等议题。
在商业化方面,百度也积极和其他企业合作,推动大数据在商业层面的应用。比如百度和万达、腾讯合作,建立大数据联盟,实现优势资源大数据融合,共同打造线上线下一体化的用户体验。又比如,广发银行携手百度,通过大数据深挖客户需求,更好的为客户服务。这些案例都是大数据在商业领域的经典应用。
应该说,大数据对社会发展的意义是非常重要的,它将驱动传统产业的升级和创新,带来多元化的价值。在这种背景下,百度等巨头活跃在大数据领域,致力于通过大数据为经济发展、社会发展提供多层面的支持,这种精神是值得肯定和鼓励的。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15