京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大家都知道,数据分析师是需要学习很多的知识,大家进行数据分析知识学习的时候需要对数据分析知识有一个清晰的知识体系,重点学习其中的重点知识就能节约时间从而更高效地开始数据分析师的职业成长生涯。那么大家知道不知道数据分析师需要重点学习什么技能呢?下面就由小编为大家解答一下这个问题。
首先就是学习编程,如果学会了编程,那么学起别的知识就能够显得十分轻松。一般来说,会不会编程就是区别初级数据分析师和高级数据分析师的分水岭。如果想成为高级数据分析师的话,那么一定要学习编程知识。有关数据分析的编程语言有Python和R语言。Python是面向未来的语言,无论从流行度、可用性还是学习难度来讲,Python都是最好的入门语言。而R语言倾向于统计分析、绘图等。统计学家或者学统计学的喜欢用R语言,大家在学习编程的话一定不要错过任何一个。我们在学习Python的时候,一开始学习的都是基础,当然了,如果做数据分析的话,基础肯定是不够的,既然是学习数据分析,肯定就要有数据才行,数据从哪里来?需要从互联网上获取。大家都知道,互联网上的信息何其之多,必须要对其加以过滤处理,提取我们想要的信息。这就要用到Python爬虫,爬虫主要就是为数据分析中的数据获取来提供帮助的。
然后就是学习SQL了,大家在学习数据分析的时候,最难最重要的就是编程能力,如果掌握了编程,那么后面的就显得很简单了。Sql就是数据库,既然是跟数据打交道,就免不了要使用数据库。就目前而言,主要有四种数据库:分别是SQLite、MySQL、MongoDB、Redis。SQLite 是一个文件型轻量级数据库,它的处理速度很快,在数据量不是很大的情况下,可以使用SQLite。MongoDB 是一个面向文档的非关系型数据库,它功能强大、灵活、易于拓展。Redis 是一个使用ANSI C 编写的高性能key-value数据库,使用内存作为主存储器。MySQL 是一个应用极其广泛的关系型数据库,它是开源免费的,可以支持大型数据库,很多中小型企业都是用的MySQL。
上面提到的内容就是小编要给大家讲解的数据分析师需要重点学习的知识。大家在进行学习数据分析的时候一定要注意数据库和编程的学习,这两个技能掌握了,那么别的技能学习起来就会显得很简单了。希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20