
很多人都听说过数据分析,现在数据分析行业也是比较火爆的,但是不知道数据分析能够做什么,或者不知道数据分析到底能够决定什么。一般来说,数据分析在营销中起到了很大的作用,如果有了充分的方案,能够使商业计划变得十分完善,从而脱离危险的领域。但是如果没有进行市场调研和数据甄别以及数据分析的话,商业计划就很容易走弯路,甚至走向死胡同。由此可见数据分析还是比较重要的,那么数据分析为什么那么重要呢?下面就由小编为大家解答一下这个问题。
我们现在处在大数据时代,所以人们已经习惯运用数据,现在差不多已经做到通过数据看事实。数据存在各行各业,当我们进入市场领域时,很多方面主要靠的就是数字。数据或者数据分析就是营销策略的主要因素之一,即使在有保障 的数据驱动下也有可能失败,但是没有数据的驱动下,是注定要失败的。通过把事物数据化,就可以把数据分析放在受众、竞争对手分析、市场战略和业务需求中进行分析,交叉引用,对该行业感兴趣的用户数量,归类用户的列表,分析工作模式和行为,数据越精通,对受众的了解就越多,然后大家就会发现在朝着正确的方向前行,从而简化效率、提升效果并创建只有数据分析才能创建的洞察力。
当然仅仅数据积累是不够的,就国内而言,大部分公司是不可能拥有可靠的信息数据,可能掌握的只是最基本的问题以及一些可看见性的基础数据表,所以现在出现了很多卖数据的企业,而这些数据需要付出一些对等或者较高代价才能得到,从而可以看出现在大数据市场的前景化,因为这关系到指令的对错、企业的未来,行业的前景。成功利用大数据,诀窍并不在于获取大量数据,而是知道怎么运用数据,分析数据从而得到数据中看不见的部分,它是能够决定连接客户、关乎企业发展、关系整个市场变动的方向。如果善于利用数据,就能够轻松的发现其实整合市场在眼前,数据分析师对于企业来说是比较重要的,可能在市场前景萎靡前已经所有察觉;可能在产品营销过程中找出问题所在。
大家看完了这篇文章以后想必大家已经知道了数据分析为什么重要了吧?一般来说,数据分析工作对于一个企业的发展是有很大的作用的,通过数据分析我们可以使得公司朝着又快又好的方向发展,让公司的发展步伐走得更加坚实有力。希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04