
就目前而言,很多人都想跳脱目前的工作状态,转行或跨界到数据分析领域,期盼自己可以做出点成绩出来。寻寻觅觅间,有的人转行或跨界成功了,有的人转行或跨界失败了;有的人生活品质提高了,有的人还在人生十字口徘徊不前。有不少人人看到数据分析行业的就业前景和当前的人才需求,就想转行或跨界到数据分析行业,但是对于数据分析并不是很了解,这就显得有些草率和迷茫了。那么转行或跨界数据分析行业到底需要做什么呢?
如果转行或跨界做数据分析的话,需要学习很多的东西,首先需要了解的是数据分析的步骤,一般来说,数据分析的步骤就是提出问题、理解数据、数据清洗、构建模型、数据可视化等步骤,下面我们来一一解答一下这个问题。
首先是提出问题,我们都知道,一切数据分析的目的都是为了解决我们生活或工作中的实际问题,明确的问题为我们后续的数据分析提供了一个大的方向和目的。提出问题以后我们需要理解数据,理解数据需要采集数据、导入数据、查看数据集的信息,包括描述统计信息,从整体上理解数据。数据清洗就是对数据进行预处理。构建模型就是对清洗过的数据进行分析。简单的分析就是得出一些业务指标;复杂的分析就要用到机器学习的算法来构建模型。数据可视化就是与他人交流你的研究成果,最好的展示方式就是图表。
数据分析中最重要的就是提出问题,这就需要我们和业务人员一起讨论明确他们的需求以及各个指标的计算公式。从而去改进业务中的不合理的地方。其实数据分析的工作中有很多时间都是用在了数据清洗的工作上,由此可见数据分析中数据清洗的重要性了。我们在数据清洗中需要处理缺失数据、删除异常值等等。以便于后期的数据探索和分析。一般来说,原始数据经常会由于记录缺失错误,这时候就会导致有些数据是缺失的。我们可以采用两种办法来处理:第一种就是直接删除缺失的数据;第二种就是通过建立模型进行插值的办法来补充这些数据。
现在的社会就是一个商业社会,如果想转行跨界到数据分析领域,一定要注意上面小编提到的内容,应该会给你的转行跨界之路带来不少帮助和启发。小编觉得,无论是转行成功,抑或跨界失败,我们都要拥有承担后果的能力。最后给大家奉献一句箴言——只有自己拥有了核心竞争力,才不会被逼到淘汰的境地!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02