
想要做好数据分析,一定要提前了解好关于数据分析的一些相关知识,比如数据分析常用的软件有哪些?我们在做数据分析时,一定要提前做好充分的了解。今天要和大家分享的内容是数据分析中常用的五种软件,下面让我们一起来好好理解一下吧。
Excel是我们最常用的一个办公软件,可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。包括有数据透视功能、统计分析、图表功能、高级筛选、自动汇总功能、高级数学计算等众多功能。
SAS软件,是全球最大的软件公司之一,是统计分析软件。SAS把数据存取、管理、分析和展现有机地融为一体。它有3个优点,第一点1、功能强大,统计方法齐,全,新;SAS提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。第二点,使用简便,操作灵活;SAS以一个通用的数据(DATA)步产生数据集,尔后以不同的过程调用完成各种数据分析。第三点,提供联机帮助功能;使用过程中按下功能键F1,可随时获得帮助信息,得到简明的操作指导。
R软件,R是一套完整的数据处理、计算和制图软件系统。优点有:数据存储和处理系统;数组运算工具;完整连贯的统计分析工具;优秀的统计制图功能;简便而强大的编程语言:可操纵数据的输入和输出,可实现分支、循环,用户可自定义功能。
SPSS,是世界上最早的统计分析软件。优点有:操作简便:界面友好,除了数据录入及部分命令程序等少数输入工作需要键盘键之外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成;编程方便:具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计方法的各种算法,即可得到需要的统计分析结果;功能强大:具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数;数据接口:能够读取及输出多种格式的文件;模块组合:SPSS for Windows软件分为若干功能模块;针对性强:SPSS针对初学者、熟练者及精通者都比较适用。
Python是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它的优点有:简单;易学;速度快;免费、开源;高层语言;可移植性;解释性;面向对象;可扩展性;可嵌入型;丰富的库;规范的代码。
上文就是小编为大家介绍的数据分析常用的五大常用软件,为大家简单做一下介绍。Excel、SAS软件、R软件、SPSS、Python是数据分析中使用最频繁的五种工具,掌握着五种常用工具是想要从事数据分析这个行业的基础,如果您有意愿加入数据分析行业,从事数据分析师的职位,那就赶快学习起来吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01