
大家都知道,在进行数据分析的时候需要先挖掘数据和存取数据,这样才能够为数据分析工作打好基础。但是在一般情况下,数据挖掘出来之后是有很多无用重复的数据的,如果将这些数据直接分析的时候会影响分析结果,这就需要对数据进行加工。如果加工得好,那么出来后的数据是一个简洁、规范、清晰的样本数据。数据加工的步骤通常包括数据抽取、数据转换、数据计算。下面就跟大家好好普及一下如何做好数据加工。
首先说说数据加工中的数据抽取吧,数据抽取就是对数据库中现有字段进行整合加工,这样就能够形成分析需要的数据。这种过程就叫做数据抽取。一般来说,数据抽取工作就是字段拆分、字段合并、字段匹配组成。什么是字段拆分哦?字段拆分就是为了截取某一字段中的部分信息,将该字段拆分成两个或多个字段。然后就是字段合并,字段合并就是将若干字段合成为一个新的字段,或者将字段值与文字、数字等组合形成新的字段。最后就是字段匹配,字段匹配就是从具有相同字段的关联数据库中获取所需数据,一般来说字段匹配要求原数据库与关联数据库至少存在一个关联字段,根据关联字段实现批量查询匹配对应的数据。
接着说说数据转换。由于不同来源的数据可能存在不同的结构,数据转换主要指将数据转换成规范、清晰、又易于分析的结构。一般来说,数据转换有结构转换和行列转换。结构转换就是在数据分析中,根据不同的业务需求,需要对数据进行结构转换。并且主要指一维数据表与二维数据表之间的转换。然后就是行列转换。这是 在进行数据分析报表时,常常要从不同的维度观察数据,例如从时间的维度查看汇总数据,或从地区的维度观查汇总数据,这样需要把行列数据进行转换。
最后说说数据计算。有有时候数据库中没有我们需要的字段,需要通过现有字段进行计算之后才能获得。我们在进行数据计算的时候主要有简单计算和日期时间的计算。简单计算就是对数据值进行加、减、乘、除等运算并产生新的字段。而日期、时间数据计算就是在企业管理中,经常会涉及到日期和时间数据的管理分析,它也是数据库中的一类重要数据。
上述的内容就是对于数据清洗工作的具体分析了,大家在进行数据分析的时候一定要注意好上面提到的内容,这样才能够做好数据分析,尤其是注意好数据的转换,这是数据加工中至关重要的内容,希望这篇文章能够给大家带来帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01