京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析是时下十分热门的一个就业方向。在互联网迅速膨胀的年代,各行各业都少不了数据分析。数据分析是一门很深的学问,其中蕴含了不少知识。今天我们就从3个方面来为大家简单地介绍一下数据分析的相关知识,希望今天的内容可以帮助到那些想转行进入数据分析领域的朋友,这也算是数据分析的入门教程了,可以对初学者或初入数据分析行业的人,对数据分析有一个更深一步的了解和巩固。
一、什么是数据分析
数据是数据分析的首要材料。它可以是汇总整理后的数据,也可以是未汇总的原始数据。数据分析是数据分析师的一切。数据分析师说白了就是分析数据的一类人,以数据为中心,运用各种分析方法得到自己的结论。
说到这个就值得来为大家说一下什么是心智模型。心智模型是就是对外界的假设和确信的观点,这对于数据的解释是非常有影响的。明确自己的心智模型、了解自己的缺陷是得到正确统计模型(统计模型是数据分析的根基)的关键。还有就是管理好管理好自己的心智模型是数据分析工作的重点。
二、如何成为一个数据分析师
一般,数据分析师分为两类。第一类是编程类;第二类是非编程类。无论哪一类,都需要先入门数据分析。小编为大家推荐三本入门必看书籍:《深入浅出数据分析》可快速了解自己是否适合数据分析职位;《谁说菜鸟不会数据分析》了解数据分析流程和方法;《数据化管理》帮助了解数据在市场、营销等方面的应用。第一类编程类需要的技术有Excel、PPT、以及SQL等;第二类非编程类需要的技术有Python、R编程。
三、工作流程
1:确定问题。数据分析师的首要步骤就是认清问题,进而解决问题。明白客户的问题是什么,多提问题、多咨询以确保自己得到信息的完整性,帮助客户来思考问题。所以,认清问题、明确分析目的是数据分析的首要任务。
2:分解问题。把大问题拆解成小问题然后进行分析解决。问题拆解以后,我们经常使用的一个分析方法是对比分析法,找出数据中影响最大的数据变量,也就是找出差异最大的数据。对比方法是数据分析中最常用、最管用的方法之一。除了对比方法,我们还可以基准假设等等一系列方法。
3:评估问题。问题已经被拆解,我们需要评估是否帮助我们实现目标。我们采用的也是对比方法或者其他统计学中的方法。评估问题的目的是找出解决问题的方法,从而形成自己的判断。
4:得出决策。通过一系列分析,终于得到了解决问题的策略。然后用简单、专业、直截了当的方法呈现出来,以确保自己的意见传达到位。
最后需要告诉大家的就是,想要学习数据分析也是一件很困难的事情,是需要大家一步一步踏实往前走的,所以大家在学习的时候,一定要用心学习,做一名合格的数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23