
脱掉大数据外衣 走出大数据困境 _数据分析师
如果要评选最近两年出现在媒体上的十大热词,大数据毫无意外会入选其中。
然而,似乎所有人都意识到大数据的能力,但却找不到运用大数据的方法。不管是企业、政府或者其他社团组织,大数据离他们那么近,却那么远。
大数据成了人们竞相议论的热词,但鲜有人提及这场巨大变革中人们需要具备的能力,无数的企业及个人忘‘数’兴叹。
作为阿里巴巴集团商业智能部副总裁、国内大数据实践的先行者和数据观察家,拥有十几年丰富的数据实战经验的车品觉,或许是国内对于如何利用大数据这个问题最有话语权的那个人。
未来是大数据的时代,未来的竞争就是数据的竞争,也许,我们早该忘掉那些华而不实的喧嚣,让大数据真正从‘看’到‘用’,真正地活起来。
为了能让更多的人学会怎么用大数据,车品觉写作了《决战大数据》一书。在该书中,他试图呈现出自己所理解的大数据的本质以及如何才能让企业走出用大数据的困境。
作为一个跟数据打了十几年交道的人,我深深地知道,从‘看’到‘用’,再从‘用’到‘养’运营数据,本身就是一个复杂的过程。目前我们最应该做的,就是暂且忘记大数据的概念。
我希望从一个实用的角度来拨开大数据的‘迷雾’,告诉每个人大数据的具体运作应该是什么样的;我们要的不是数据的量,而是有‘质’的量,这正是我写作本书的重要目的。
脱掉大数据外衣
研究、实践大数据多年的车品觉,对于大数据有着自己独特的看法。在他看来,大数据就像是国王的新衣:每个人都在说着动听的话,却没有人看到那件衣服。
网络上有很多人在谈大数据,但是他们只会谈,不会做。那些所谓的大数据专家,根本就没有做过。
对于为何没有好的办法去做,车品觉《决战大数据》一书称:用数据的人不知道大数据从哪里来,做数据的人不知道大数据如何用。
用的人不敢用,因为大数据的真实性;做的人不知道怎么用,因为大数据的复杂性。这一问题造成的结果就是,数据量变得越来越大,而且越来越无法有效地被使用。
大数据从来不是免费的午餐,伴随着大数据热潮的到来,关于大数据的一些问题也会层出不穷大数据会夹杂着虚假信息;大数据的来源是多种渠道的,偏倚、随机的误差总是存在
除了上述问题,人才的断层,才是大数据所面临的最严重的问题。
现在,收集数据的人并不清楚未来使用数据的人要做什么,这是目前大数据的一大命门。
车品觉解释,在使用大数据时,我们通常的做法是先把数据收集起来,因为这些数据在未来可能有用。不过,未来可能有用就注定会引发一个问题收集数据的人不知道未来使用数据的人要做什么。
这时候,如果你再问收集数据的人如何才能更好地收集数据,那么,数据的使用就会陷入一个死循环。
在书中,车品觉举了搜索感冒药的例子,来佐证自己的这一论断,他写道:比如我在搜索引擎里面发现某个地方搜索感冒药的频率非常高,于是,我就断定这个地方可能出现了流行性感冒。但是,这样是否就是正确地使用大数据呢?
答案是否定的。因此,车品觉说,生产数据的人,并没有给使用者这个数据的人一些参数,而使用者在其使用之后如果效果不好,就会面临损失。而这样的信息不对称,最终受到损害的是那些使用数据的人。
问题就是答案
在车品觉看来,企业如果想要真正用好大数据,需要看清楚大数据能给企业带来怎样的价值,以及它的本质到底是什么。
当回归到这个问题时,如果你自己都没有弄清楚,那么就算给你再多的数据,你也只会手足无措。
那么,大数据究竟能给企业带来怎样的价值呢?大数据的本质又是什么呢?在《决战大数据》一书中,车品觉给出了自己的理解:大数据能让企业合理地分配资源,以及带来更好的用户体验,而大数据的本质则在于还原用户的真实需求。
数据收集实现的是企业资源的合理分配,例如,把推荐系统做得更好,让更多的用户可以有更高的概率找到他们想要的商品,这样就能提高商品的购买率,为企业创造更大的经济效益;数据收集实现的也是顾客体验的提升,例如,便捷的搜索引擎可以使顾客更容易地找到他们所需要的商品,为他们创造更加优质的购物体验。
而关于大数据本质的判断,车品觉则在书中作出了如下论断:数据的本质就是还原,这是收集元数据的关键方法,如果没有这个概念,你就不知道未来你需要什么数据,就更不懂得什么是重要的数据,到最后只会产生越来越多的无从辨别的数据。
在车品觉看来,数据的这一还原功能,就像是一个瞄准器,瞄准消费者的购物行为,并且以数据的形式记录下来。
如何更好地理解用户在各个不同场景下表现出来的不同需求,如何更好地理解数据融合后产生的价值,将是未来商业中每一个企业都必须考虑的问题。
阿里巴巴的秘诀
作为阿里巴巴集团副总裁和数据委员会会长,车品觉是少数几个对阿里巴巴从IT战略转型到DT战略(大数据战略)享有发言权的人之一。在《决战大数据》一书中,他总结了阿里巴巴在践行DT战略中的经验分享给后来者。
当谈到阿里巴巴的数据化运营时,我首先想到的就是‘人’,我们太多的时间都在讨论我们应该做什么,却很少会反过来想如果让数据化运营落地首先要从‘人’做起。
因此,在《决战大数据》一书中,车品觉首先跟读者分享的,便是阿里巴巴数据化运营的内功混、通、晒这三板斧。
所谓的混,是指数据分析师要跟管理业务部门的人打成一片。车品觉认为,作为数据分析师,如果不和业务部门混在一起,就不会知道业务部门在做什么,商业敏感是要靠‘混’出来的,它并不会凭空出现在你的面前。
只有具备商业敏感的数据分析师,才会懂得使用什么数据来驱动公司实现经营目标,现在在公司里,我最不希望看到数据分析师长时间坐在自己的位置上埋头苦干,我更愿意看到他们和业务人员混成一片。
而车品觉所谓的通,则是指企业判断数据是否有价值的一种能力,如果做到了这一点,就做到了通。
坚持带着业务问题来观察数据或者带着数据来观察业务,兼备二者的敏感,就是做到了‘通’,有些人在很短的时间里就能判断出数据是否有价值,就是因为‘混通’了。
但是,想要打通数据,并不容易。在书中,车品觉提出了打通数据的三个关键点:首先是要做好数据安全工作,以保证公司内部不同职位的员工可以查看不同的数据;然后,统一不同部门的数据标准,使公司内部数据有统一的接口,避免混乱;最后,关联不同部门的数据,创造机会让数据的运营可以扩散至部门之外。
在打通数据之后,阿里巴巴所做的便是晒数据。在‘晒’数据层面上,通常是通过数据来回答这几个问题:业务好还是不好;数据如何改变可以让业务更好;如何利用数据帮助业务发现机会,甚至产生出新的商业价值。
混、通、晒这三板斧,是阿里巴巴在实施大数据战略时的核心法宝,车品觉说:它们其实是配合了数据方法论与人的修炼,能做到借事修人,让用数据的人在数据中成长,循序渐进地让每个人成为数据分析师。
当然,这三板斧只是阿里巴巴大数据战略的内核部分。在书中,车品觉还提到了实施大数据战略所需要的外延策略,而要了解大数据的最佳实现方式,无疑是直接阅读他所撰写的《决战大数据》一书。
数据的5大价值
01.识别和串联价值
能够辨别关系和身份的数据是最重要的,这些数据应该是有多少存多少,永远不要放弃。在大数据时代,越能够还原用户真实身份和真实行为的数据,就越能够让企业在大数据竞争中保持战略优势。
02.描述价值
描述业务的数据包括成交额、成交用户数、网站的流量、网站详细页的流量、成交的卖家数等等,我们可以通过数据对业务的描述来观察交易活动是否正常。
03.时间价值
数据的时间价值是大数据运用最直接的体现,通过对时间的分析,能够很好地归纳出一个用户对于一种场景的偏好。
04.预测价值
数据的预测价值分成两个部分,第一是对于某一个单品进行预测,第二是数据对于经营状况的预测,即对公司的整体经营进行预测,并能够用预测的结论指导公司的经营策略。
05.产出数据的价值
从数据的价值来说,很多数据本身并没有特别的含义,但是在几个数据组合在一起或者对部分数据进行整合之后,就产生了新的价值。文章来自:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01