
Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法。一般而言,Pandas 是使 Python 成为强大而高效的数据分析环境的重要因素之一。在本文中,作者从基本数据集读写、数据处理和 DataFrame 操作三个角度展示了 23 个 Pandas 核心方法。
Pandas 是基于 NumPy 构建的库,在数据处理方面可以把它理解为 NumPy 加强版,同时 Pandas 也是一项开源项目。它基于 Cython,因此读取与处理数据非常快,并且还能轻松处理浮点数据中的缺失数据(表示为 NaN)以及非浮点数据。在本文中,基本数据集操作主要介绍了 CSV 与 Excel 的读写方法,基本数据处理主要介绍了缺失值及特征抽取,最后的 DataFrame 操作则主要介绍了函数和排序等方法。
基本数据集操作
(1)读取 CSV 格式的数据集
pd.DataFrame.from_csv(“csv_file”)
或者:
pd.read_csv(“csv_file”)
(2)读取 Excel 数据集
pd.read_excel("excel_file")
(3)将 DataFrame 直接写入 CSV 文件
如下采用逗号作为分隔符,且不带索引:
df.to_csv("data.csv", sep=",", index=False)
(4)基本的数据集特征信息
df.info()
(5)基本的数据集统计信息
print(df.describe())
(6) Print data frame in a table
将 DataFrame 输出到一张表:
print(tabulate(print_table, headers=headers))
当「print_table」是一个列表,其中列表元素还是新的列表,「headers」为表头字符串组成的列表。
(7)列出所有列的名字
df.columns
基本数据处理
(8)删除缺失数据
df.dropna(axis=0, how='any')
返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴,选择 how=「all」会删除所有元素都是 NaN 的给定轴。
(9)替换缺失数据
df.replace(to_replace=None, value=None)
使用 value 值代替 DataFrame 中的 to_replace 值,其中 value 和 to_replace 都需要我们赋予不同的值。
(10)检查空值 NaN
pd.isnull(object)
检查缺失值,即数值数组中的 NaN 和目标数组中的 None/NaN。
(11)删除特征
df.drop('feature_variable_name', axis=1)
axis 选择 0 表示行,选择表示列。
(12)将目标类型转换为浮点型
pd.to_numeric(df["feature_name"], errors='coerce')
将目标类型转化为数值从而进一步执行计算,在这个案例中为字符串。
(13)将 DataFrame 转换为 NumPy 数组
df.as_matrix()
(14)取 DataFrame 的前面「n」行
df.head(n)
(15)通过特征名取数据
df.loc[feature_name]
DataFrame 操作
(16)对 DataFrame 使用函数
该函数将令 DataFrame 中「height」行的所有值乘上 2:
df["height"].apply(*lambda* height: 2 * height)
或:
def multiply(x):
return x * 2
df["height"].apply(multiply)
(17)重命名行
下面代码会重命名 DataFrame 的第三行为「size」:
df.rename(columns = {df.columns[2]:'size'}, inplace=True)
(18)取某一行的唯一实体
下面代码将取「name」行的唯一实体:
df["name"].unique()
(19)访问子 DataFrame
以下代码将从 DataFrame 中抽取选定了的行「name」和「size」:
new_df = df[["name", "size"]]
(20)总结数据信息
# Sum of values in a data frame
df.sum()
# Lowest value of a data frame
df.min()
# Highest value
df.max()
# Index of the lowest value
df.idxmin()
# Index of the highest value
df.idxmax()
# Statistical summary of the data frame, with quartiles, median, etc.
df.describe()
# Average values
df.mean()
# Median values
df.median()
# Correlation between columns
df.corr()
# To get these values for only one column, just select it like this#
df["size"].median()
(21)给数据排序
df.sort_values(ascending = False)
(22)布尔型索引
以下代码将过滤名为「size」的行,并仅显示值等于 5 的行:
df[df["size"] == 5]
(23)选定特定的值
以下代码将选定「size」列、第一行的值:
df.loc([0], ['size'])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15