京公网安备 11010802034615号
经营许可证编号:京B2-20210330
|
在爱德华·斯诺登曝光了美国国家安全局(NSA)要求IT公司为其提供通话录音和数据的行径之后,乔治·奥威尔的《1984》一下子销量大增。到目前为止,人们对 “老大哥”还没到真正热爱的程度,但他们已经准备好为确保安全而付出隐私被侵犯的代价。
大数据是绕不开的话题。商业公司掌握的个人信息正在迅速地增加,他们正在利用新型的分析方法和人工智能来打造他们的产品和服务,并对客户的未来需求进行预测。谷歌的首席执行官拉里·佩奇如此形容他理想中的科技成果——一个真心聪明的助手,能够替你代劳,你不用操心,也不需要动脑。 这简直像是生活在真正的“唐顿庄园”里(庄园里的贵族得到仆人与管家的周道服侍),有一台电脑为你安排日程,规划最佳的出行线路,向你推荐合你胃口的电影,找出最适合你搭乘的航班。这听上去颇为诱人,我们每个人时间有限,都想过得轻松自在,与其被各色资讯轮番轰炸,被迫挑来选去,还不如寻求这种私人助手般的服务。 NSA的行动已经进行了整整60年,事件的曝光足以让大众深感震惊,但我估计大多数人未必能明白他们自己每天究竟创造了多少可供追踪的信息,也未必能清楚那些让大数据企业得以利用这些信息的技术有了哪些最新的发展。科技进步日新月异,两年前完全无法想象的东西,到今天已然成了家常便饭。 “前途光明却也刺眼。那些掌握海量信息的企业对你的了解程度甚至超过你本人,他们将有能力预测你下一步的行动。“李开复说,他曾掌管谷歌中国地区的业务。 上周的专栏里,我把今天的谷歌和19世纪末的通用电气做了比较,两者都是引领技术革新浪潮的创新型工业企业。但另一方面,谷歌、亚马逊、微软和其他科技巨头正在积聚的强大力量,这种力量需要小心翼翼地加以控制。 NSA和大数据企业将数据库资源和计算能力用在了不同的地方,前者用它们来侦查间谍和恐怖分子,后者利用它们来将合适的服务提供给适合的用户。他们同样利用了超大型数据库以及模式识别(pattern recognition)和网络分析(network analysis)之类的技术手段。 从前沿科技的角度看,大数据逐渐变得和某一类人工智能相似,比如哪怕你拼错了关键词,搜索引擎还是能猜得到你本来打算搜索的东西。还可以像微软去年在中国演示的那样,实时将演讲翻译成另一种语言。或者在分析了成千上万张图片之后,学会辨别猫咪的照片。 “深度学习”指的是电脑以类似人类的方式进行学习的能力,值得一提的是谷歌已经将这一领域的几位先驱人物招至麾下,其中包括科学家兼作家雷·库兹韦尔(Ray Kurzweil)。NSA向美国私人企业转移了各项技术,其中就包括了“最尖端的‘机器学习’科技” (machine learning technologies) 这类软件程序能从一些琐碎的信息中推断出许多结果,前提是信息的数量得足够多,所以NSA才会努力从威瑞森(Verizon)和其他电信运营商那里获取通话元数据(译注:元数据可以理解成关于数据的数据)。奥巴马向美国民众保证“没有人在监听你们的通话”,但这些数据本身确实价值非凡。 哈佛大学的教授拉坦亚·斯维尼(Latanya Sweeney)进行研究发现,如果在公共数据库中进行交叉查验,仅仅依靠年龄、性别和邮编信息,就能确认87%的人的身份。社交网络和互联网公司收集的数据也能办到同样的事情。 大数据公司之所以拥有超强能力,是因为他们将用户个人信息和用户行为的观察结合在了一起。他们不仅知道人们买了什么,而且知道是在哪儿买的(由智能手机的GPS数据测算)。于是你才看到了各种“您可能会喜欢……“这类推算出来的数据。 如果我跑到印度去,在安卓手机上搜索“泰姬陵”,谷歌会优先显示北方邦的那座历史名胜,要是我在伦敦市中心搜索同样东西,跳出来的会是附近的孟加拉餐厅。可能再过不久,傍晚时分,当我走在陌生城市的街上,智能手机会根据我之前给出的餐饮评价记录,主动推送餐厅信息,问我是否需要预订晚餐。 一方面,如果托了它的福,美餐了一顿,自然称心如意。可另一方面,正如世界经济论坛发布的一份关于个人信息的报告里指出的:“‘推算数据’(Inferred data)好像是一位正盯着监视屏,无所不知的老大哥。“ 由此引发的第一点忧虑便是:拥有了这样的软件之后,大数据企业变得难以匹敌。我们这些用户为他们提供的数据越多,他们就能越好地预测我们的需求。机器脑瓜真的是越用越灵。 第二个是信任问题。社交网络在用户信息保护方面一直做得不好,他们目前只能留存一小部分信息,主要关于用户的行为、习惯、对新兴服务的意向等等。难怪NSA会找上这些网站,NSA能提供足够的计算能力,而社交网络上有海量的信息资源。 第三点是所有权问题。每个人都对自己的信息享有权利,但要是自己的信息和其他人的信息混在了一起,汇入了广阔的数据库当中,会是什么结果?要是我改变了主意,不希望别人获得这些信息,它们还能不能被要回来? 最要紧的是,我们还不清楚这样的技术意味着什么,毕竟我们才刚刚把一只脚跨入大数据的时代。大数据显然有许多方面值得青睐,但要对它一见钟情,恐怕并不容易。 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22