京公网安备 11010802034615号
经营许可证编号:京B2-20210330
|
在爱德华·斯诺登曝光了美国国家安全局(NSA)要求IT公司为其提供通话录音和数据的行径之后,乔治·奥威尔的《1984》一下子销量大增。到目前为止,人们对 “老大哥”还没到真正热爱的程度,但他们已经准备好为确保安全而付出隐私被侵犯的代价。
大数据是绕不开的话题。商业公司掌握的个人信息正在迅速地增加,他们正在利用新型的分析方法和人工智能来打造他们的产品和服务,并对客户的未来需求进行预测。谷歌的首席执行官拉里·佩奇如此形容他理想中的科技成果——一个真心聪明的助手,能够替你代劳,你不用操心,也不需要动脑。 这简直像是生活在真正的“唐顿庄园”里(庄园里的贵族得到仆人与管家的周道服侍),有一台电脑为你安排日程,规划最佳的出行线路,向你推荐合你胃口的电影,找出最适合你搭乘的航班。这听上去颇为诱人,我们每个人时间有限,都想过得轻松自在,与其被各色资讯轮番轰炸,被迫挑来选去,还不如寻求这种私人助手般的服务。 NSA的行动已经进行了整整60年,事件的曝光足以让大众深感震惊,但我估计大多数人未必能明白他们自己每天究竟创造了多少可供追踪的信息,也未必能清楚那些让大数据企业得以利用这些信息的技术有了哪些最新的发展。科技进步日新月异,两年前完全无法想象的东西,到今天已然成了家常便饭。 “前途光明却也刺眼。那些掌握海量信息的企业对你的了解程度甚至超过你本人,他们将有能力预测你下一步的行动。“李开复说,他曾掌管谷歌中国地区的业务。 上周的专栏里,我把今天的谷歌和19世纪末的通用电气做了比较,两者都是引领技术革新浪潮的创新型工业企业。但另一方面,谷歌、亚马逊、微软和其他科技巨头正在积聚的强大力量,这种力量需要小心翼翼地加以控制。 NSA和大数据企业将数据库资源和计算能力用在了不同的地方,前者用它们来侦查间谍和恐怖分子,后者利用它们来将合适的服务提供给适合的用户。他们同样利用了超大型数据库以及模式识别(pattern recognition)和网络分析(network analysis)之类的技术手段。 从前沿科技的角度看,大数据逐渐变得和某一类人工智能相似,比如哪怕你拼错了关键词,搜索引擎还是能猜得到你本来打算搜索的东西。还可以像微软去年在中国演示的那样,实时将演讲翻译成另一种语言。或者在分析了成千上万张图片之后,学会辨别猫咪的照片。 “深度学习”指的是电脑以类似人类的方式进行学习的能力,值得一提的是谷歌已经将这一领域的几位先驱人物招至麾下,其中包括科学家兼作家雷·库兹韦尔(Ray Kurzweil)。NSA向美国私人企业转移了各项技术,其中就包括了“最尖端的‘机器学习’科技” (machine learning technologies) 这类软件程序能从一些琐碎的信息中推断出许多结果,前提是信息的数量得足够多,所以NSA才会努力从威瑞森(Verizon)和其他电信运营商那里获取通话元数据(译注:元数据可以理解成关于数据的数据)。奥巴马向美国民众保证“没有人在监听你们的通话”,但这些数据本身确实价值非凡。 哈佛大学的教授拉坦亚·斯维尼(Latanya Sweeney)进行研究发现,如果在公共数据库中进行交叉查验,仅仅依靠年龄、性别和邮编信息,就能确认87%的人的身份。社交网络和互联网公司收集的数据也能办到同样的事情。 大数据公司之所以拥有超强能力,是因为他们将用户个人信息和用户行为的观察结合在了一起。他们不仅知道人们买了什么,而且知道是在哪儿买的(由智能手机的GPS数据测算)。于是你才看到了各种“您可能会喜欢……“这类推算出来的数据。 如果我跑到印度去,在安卓手机上搜索“泰姬陵”,谷歌会优先显示北方邦的那座历史名胜,要是我在伦敦市中心搜索同样东西,跳出来的会是附近的孟加拉餐厅。可能再过不久,傍晚时分,当我走在陌生城市的街上,智能手机会根据我之前给出的餐饮评价记录,主动推送餐厅信息,问我是否需要预订晚餐。 一方面,如果托了它的福,美餐了一顿,自然称心如意。可另一方面,正如世界经济论坛发布的一份关于个人信息的报告里指出的:“‘推算数据’(Inferred data)好像是一位正盯着监视屏,无所不知的老大哥。“ 由此引发的第一点忧虑便是:拥有了这样的软件之后,大数据企业变得难以匹敌。我们这些用户为他们提供的数据越多,他们就能越好地预测我们的需求。机器脑瓜真的是越用越灵。 第二个是信任问题。社交网络在用户信息保护方面一直做得不好,他们目前只能留存一小部分信息,主要关于用户的行为、习惯、对新兴服务的意向等等。难怪NSA会找上这些网站,NSA能提供足够的计算能力,而社交网络上有海量的信息资源。 第三点是所有权问题。每个人都对自己的信息享有权利,但要是自己的信息和其他人的信息混在了一起,汇入了广阔的数据库当中,会是什么结果?要是我改变了主意,不希望别人获得这些信息,它们还能不能被要回来? 最要紧的是,我们还不清楚这样的技术意味着什么,毕竟我们才刚刚把一只脚跨入大数据的时代。大数据显然有许多方面值得青睐,但要对它一见钟情,恐怕并不容易。 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27