京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果在分析处理上缺少相应的技术支撑,大数据的价值将无从谈起
大数据的价值开始日益受到重视,人们对数据处理的实时性和有效性的要求也在不断提高。现在对大数据的应用己经不局限于BI(商业智能)领域,在公共服务、科学研究等各方面,大数据也都在发挥着巨大的影响力,而且应用面要宽得多。比如美国国家海洋和大气管理局尝试利用大数据方法协助进行气候、生态系统、天气和商业方面的研究一谷歌流感趋势则使用经过汇总的谷歌搜索数据来估测流感疫情。数据无疑已经成为信息社会日益重要的资源。
大数据的意义并不在于大容量、多样性等特征,而在于我们如何对数据进行管理和分析,以及因此而发掘出的价值。如果在分析处理上缺少相应的技术支撑,大数据的价值将无从谈起。
具体到企业而言,处于大数据时代的经营决策过程已经具备了明显的数据驱动特点,这种特点给企业的IT系统带来的是海量待处理的历史数据、复杂的数学统计和分析模型、数据之间的强关联性以及频繁的数据更新产生的重新评估等挑战。这就要求底层的数据支撑平台具备强大的通讯(数据流动和交换)能力、存储(数据保有)能力以及计算(数据处理)能力,从而保证海量的用户访问、高效的数据采集和处理、多模式数据的准确实时共享以及面对需求变化的快速响应。
传统的处理和分析技术在这些需求面前开始遭遇瓶颈,而云计算的出现,不仅为我们提供了一种挖掘大数据价值使其得以凸显的工具,也使大数据的应用具有了更多可能性。
云计算包含两方面的内容;服务和平台,所以云计算既是商业模式,也是计荞模式。比如美国加州大学伯克利分校在一篇关于云计算的报告中,就认为云计算既指在互联网上以服务形式提供的应用。也指在数据中心里提供这些服务的硬件和软件。
就目前技术发展来看,云计算以数据为中心,以虚拟化技术为手段来整合服务器、存储、网络、应用等在内的各种资源,并利用SOA架构为用户提供安全、可靠、便捷的各种应用数据服务;它完成了系统架构从组件走向层级然后走向资源池的过程,实现IT系统不同平台(硬件、系统和应用)层面的“通用”化,打破物理设备障碍,达到集中管理、动态调配和按需使用的目的。
借助“云”的力量,可以实现对多格式、多模式的大数据的统一管理、高效流通和实时分析,挖掘大数据的价值,发挥大数据的真正意义。
大数据处理首先是获取和记录数据;其次是完成数据的抽取、清洁和标注以及数据的整合、聚集和表达等重要的预处理或处理(取决于实际问题)工作;再次需要一个完整的数据分析步骤,通常包括数据过滤、数据摘要、数据分类或聚类等预处理过权最后进入分析阶段,在这个阶段,各种算法和计算工具会施加到数据上,以求能得到分析者想要看到的或者可以进行解释的结果。
涉及到庞大的数据量,这一整套处理流程在各个不同阶段都会对传统的技术手段提出挑战。比如,海量的网络化设备、海量的在线用户、不间断的网络联接,都在时刻生成大量的、多格式的内容数据和状态信息,这些经由各种客户端(网页、应用或是传感器等)采集而来的信息数据,连同成千上万的访问和操作请求,会以高并发的方式向系统服务器施加压力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01