
AI 是万能的吗?当前 AI 仍面临的难题是什么
谈到人工智能(特别是计算机视觉领域),大家关注的都是这一领域不断取得的进步,然而人工智能到底发展到什么程度了?AI 已经成为万能的了吗?Heuritech 的 CTO Charles Ollion 希望通过他的文章可以揭露一些当前的真实情况。接下来就让我们一起看看这位作者都谈了什么内容吧!
作者基于 Xkcd 的漫画改编
最近,我读了 Pete Warden 的一篇文章,这篇文章介绍了一种可以辨别植物疾病的分类器。在辨别病害类型方面,这个分类器的精确度要比人类肉眼辨别的精确度高的多。但是,这个分类器在面对一张随机不含有植物的图片时会给出一个非常惊人的错误结果(如下图所示:左图展现了分类器在真实植物上检测病害类型的良好效果;而右图,在指向计算机键盘时,一张随机的非植物图片,分类器仍会认为这是一种受损的作物)。然而这个错误,却不会发生在人类身上。
(来源:Pete Warden's blog —— What Image Classifiers Can Do About Unknown Objects)
上面的举例说明,计算机视觉系统的能力仍有别于人类的智力,下面我想通过一道测试题来进一步证明这一观点:
你知道当前人工智能系统最擅长做什么吗?
下面有五个不同的计算机视觉问题,通过给出的输入与得到的输出结果,试着猜一下哪类问题是计算机视觉系统最容易解决的?哪类问题是非常困难的?
▌1.检测糖尿病性视网膜病变
输入:有约束的视网膜图片
输出:5个类别(健康型以及处于不同阶段与形式的病变状态)
糖尿病性视网膜病变,一种影响到眼睛的糖尿病并发症
来源:https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html
▌2.摄像头手势识别
输入:由摄像头拍摄的一系列短视频
输出:25种动作中可能性最大的一种
(注:TwentyBN 现已发布了更丰富的数据集)
来源:TwentyBN
来源:https://medium.com/twentybn/building-a-gesture-recognition-system-using-deep-learning-video-d24f13053a1
▌3.识别 Instagram 图片里的手提包
输入:Instagram 上的图片
输出:圈出图片里的手提包
▌4.识别行人
输入:由固定摄像机拍摄的图片
输出:圈出图中所有的行人
▌5.机器人抓取物体
输入:由固定摄像机拍摄的两张图
输出:机器人控制策略
左图为待抓取的物体,机器人上装有一台固定摄像机来学习如何抓取物体
来源:https://ai.googleblog.com/2017/10/closing-simulation-to-reality-gap-for.html
然而真相是?
▌糖尿病性视网膜病变:这类识别器是容易实现的,因为输入和输出都是有约束的(谷歌在他们的报道中声明已经实现并有良好表现了)。但当把这一系统投入到实际应用时,困难出现了。用户的体验以及系统与医生的配合是关键问题,因为对不同类型结果的判定可能会有失偏颇。
▌摄像头手势识别:这个问题相对来说很好定义,但多变性增加了它的难度:这些由摄像头拍摄的视频中,人们的距离不同,手势持续时间不同,等等... 此外,在对视频资料进行分析训练时,随之产生的还有诸多的工程问题。不得不说这个问题是非常困难的,但已经得到了解决。
▌识别 Instagram 图片里的手提包:这个问题看起来似乎很容易解决,但输入的图片是没有约束的,而且类别的定义也非常广(手提包有很多种形态,没有一个明确的视觉模式,因此很有可能被识别成很多其它物体)。这使得问题变的非常困难,看看下面图就明白了。
由经过手提包识别训练的模型给出的识别结果
我们的训练数据中没有“斧子”的图片作为反例,而斧子的头部和模型学习过的手提包的图像非常相似。它是褐色的,有着手提包的形状和大小,而且被握在手里。
然后我们就这样放弃了吗?不,我们可以通过主动学习来解决这个问题,即对模型给出的错误判断进行标记,然后把这些错误例子反馈给模型继续训练。但凭借现有的技术来说,想像 Instagram 中的图片,如此开放的领域上达到完美的效果,仍然是一项巨大的挑战。
对于我们人类来讲,关于糖尿病相关的工作很难,但辨认斧子和手提包却很容易,这主要原因是斧子对我们来说是一种极为普遍的存在,一种大家都知道的常识,并且这些内容超出了输入到系统数据的范围。
▌识别摄像头中的行人:这类问题很简单:输入非常受限(固定摄像机),而且类别(行人)也很标准。可能会存在目标被遮挡等相关问题,但总体来说这个问题很容易就可以解决。不过,如果对这个问题稍作改动,就会变得困难很多:如摄像机是移动的;或从不同方位、角度、范围进行拍摄 —— 这个问题就变得更开放且棘手了。
▌机器人抓取物体:这个问题是极其困难的。它超出了标准分类和回归问题的范围,因为输出是控制机器人的策略,通常使用强化学习来进行训练,与有监督学习相比,这种学习方法还不太成熟。此外,对象在大小、形状和抓取的方式上都会有所不同,可能还要借助语义的理解。但是这个问题可以由一个2岁的小孩子轻易解决(即使没有固定摄像头、背景完全相同这些设定),但对我们来说,让人工智能做这件事还有很长的路要走。
作者声明:如果不同意我给出的答案,我很乐于和大家讨论,因为在这个领域要学的知识很多,我不认为我知道所有问题的答案。
对计算机视觉与人工智能的期望
对计算机视觉系统和我们人类来说,“难度”这个概念是有很大不同的,这一点很容易引导我们对人工智能产生错误的期望。工程师和科研人员不得不从现实出发来对待人工智能系统在开放域的表现。
当前我们在对人工智能系统发展情况的理解上也还存在很多问题。以自动化驾驶为例:在有约束(例如:高速公路)下驾驶与无约束(如: 市区、小路... ...)下对驾驶存在着极大的区别。如今大多数企业都基于在没有司机操控下,通过自动驾驶汽车所行驶的里程数来对自动化驾驶水平进行评估。这也促使了测试者更乐于把汽车放到容易驾驶的环境里,但其实我们更应该做的是建立一些指标,重点关注扩大自动化驾驶汽车正常驾驶的范围。
更概括地来讲,我认为我们不应该再说什么“计算机视觉已经实现了。”这样的话了。如果我们有足够多已经标记了的数据和有约束的类别,小范围内的问题可能已经解决了。但若将世界范围的常识知识引入计算机视觉系统,这仍然是一个巨大的挑战。
ClevR,用于组合式语言和初级视觉推理的诊断数据集
其实现在很多的研究人员已经开始在进行这方面的研究了,也有一些研究领域正在蓬勃的发展着,例如:视觉推理、物理发现法则、通过无监督/自我监督进行表征学习等。AI 科技大本营在文末给大家列出了相关的研究文章,方便大家学习。
鉴于我对计算机视觉的研究与发展了解多一些,上述都是我关于这方面的一些看法,但我相信同样的理由也可以应用到其它机器学习问题上,特别是关于 NLP 应用深度学习与机器学习的研究领域。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27