京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析或将带来广告3.0时代
与《广告分析2.0 时代来临》作者观点不同,我认为,如果从互联网时代开始谈起,广告的1.0 时代是“眼球经济”时代,广告的2.0 时代则是社交媒体时代,基于大数据分析的则是3.0时代。
在互联网时代,广告行业依然是依靠“千人印象成本”的计算,只是将户外广告、平媒广告的做法搬到互联网上而已——以曝光和印象为核心的广告模式。比如,电视广告计算的是收视率,机场外广告牌计算的是该区域的人流量。同理,在互联网上只是单纯地出售Banner等位置,核心问题还是抢印象。
而在社交媒体时代,在开心网、人人网、新浪微博等平台上,广告主可以实现与消费者实时互动,并促发参与和内容创造。
而广告3.0时代则在2.0的基础上,以数据分析为核心,实现对消费者购买决策过程的关注和优化。所有的传播都会最终转化为商业价值,不只停留在印象和参与的层面。
或者说,1.0时代广告与消费者都是独立存在的,二者之间不见得会有关系性,即使有联系也是单向的;2.0时代建立起消费者与广告的互动关系,但互动关系并非一定带来确定性的购买关系;3.0时代是可以完成广告与消费者行为之间确定性的购买联系。
中国市场已经走向了2.0时代的末期。如果只是社交媒体做广告营销,似乎营销人员可以靠粉丝数量“交差”了,但井喷式的社交媒体营销阶段已经过去,广告主越来越关注“粉丝关注”对商业的价值。
从广告公司的角度来说,奥美互动如何帮助广告主实现商业价值?一般,奥美互动会设定广告战略,以确定广告活动的核心目的,之后做出媒体选择,最后,创意就会解决“怎么做”的问题。
确定此次广告活动的核心目的之后,奥美互动就会选择明确的KPI。比如,在广告主只看用户活跃度的情况下,传统的战术派广告公司会选择QQ和人人网作为媒体平台,因为它们达到100万活跃用户这一指标的速度非常快。只要确定了媒体选择之后,奥美互动的跟踪程序就开始搜集数据。奥美的优势在于把不同媒体平台的数据整合在一起,分析出漏斗模型不同层次的转化率如何。如今广告主的需求是要获得有潜在购买意向的消费者,这样传统的战术派广告公司就行不通,可能高尔夫球俱乐部的数据比QQ更有效,潜在消费者更多。这要求广告公司关注购买决策的整个过程,而不是关注几个活跃度高的媒体。
举例来说,近期奥美互动帮助一个国际品牌在中国做“试点”。通常大品牌的做法是在一线城市铺设店面、做促销活动和广告轰炸。但我们提出,其实只需要在淘宝开一个网店,或者多开几家C2C网店同时开设一家品牌旗舰店。这样从品牌建立、认知度、消费偏向、销售、服务到客户忠诚度等全部用户数据都能被跟踪,从用户的购买行为就能清晰知道哪一类产品在何种情况下的销售量会比较大,同时测试品牌战略是否有效。
对公司来说,这里预示了组织变革的迫切需要——这个时代,销售与营销不能再单独分割开来。营销的曝光需要直接导向销售行为的实现,而销售本身也是在做品牌建设。根据我们的观察,日本和韩国的奶粉和纸尿裤品牌,其产品在中国市场上并无渠道网络,单纯依靠电子商务可以完成很高的销售额。
营和销结合在一起,是具有跨时代意义的分水岭。两者之间的合作更紧密,而这需要公司制度和流程的驱动,甚至迫切要求公司改变战略模式、经营模式,因为有太多小型垂直公司能够迅速在各个领域把大公司的市场蚕食和分解掉。比如,绝大多数公司的电子商务部门是独立的,但是它是向营销部门汇报还是向销售部门汇报,这是完全不同的考核指标——起到品牌的作用还是渠道分销的功能,这背后体现的是公司战略的不同考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11