
玩音乐,敲架子鼓,一个被“耽误了”的机器学习高手
多数伏在案前敲击键盘的程序员或许都曾憧憬:黑框眼镜、格子衬衫、脚踩凉拖背后的另一番模样的自己。
对于来自纽约的 Peter Sobot 而言,他的本职工作是通过机器学习系统为 Spotify 平台上的用户推荐音乐。但朝九晚五的工作之余,他还是一名鼓手兼音乐人,这也就意味着他需要经常创作各类电子音乐,当然,包括架子鼓等打击乐器在内。
近日,Peter Sobot 在其博客中写道:“他利用机器学习构建了一款应用程序,无论音频样本是底鼓、军鼓还是其他鼓,其识别准确率高达 87%。”
万万没想到,在工程师的手中,我们可以用机器学习搭建自己的音乐梦想!
需要了解的是,在现代电子音乐制作中,一般都会使用鼓声样片而不是真实的鼓手现场录音的旋律,而这些样片通常以商业性质出售,或者由音乐人免费在网上共享出来。不过,这样的样片却往往很难利用,问题就出在它们的标签和分类方式很难尽如人意。
“每家公司都试图通过创建自己的样片夹专有格式,如 Native Instrument 的 Battery 或 Kontakt 格式。两者都使用元数据,并允许用户通过各种标签浏览样片。但这些软件包非常昂贵,且需要学习其任务流程。” Peter 写道。
于是,这位被音乐耽误了的工程师决定利用机器学习来尝试解决这一问题。
例如,给出的一段音频该如何判断究竟是是底鼓、军鼓、踩镲,还是别的音乐样本?
如果是人类,可以毫不费力地区分出声音,但计算机却需要大量的训练。在机器学习中,这通常被称为分类问题,即机器需要注入数据并对其进行分类。在这其中,通常会涉及特征提取阶段。
Peter 指出,人类识别不同的鼓音会从以下几个特征判别:
一是整体文件长度。因为小鼓的声音要比踢鼓的声音持续时间更长,所以比较容易测量。
二是整体响度。实际上,由于电子音乐的大多数样本都是标准化的,这意味着不同样片中的鼓声响度会被调整统一。相反,可以使用“最大”、“中等”、“最小”三种响度以更好地了解响度是如何随时间变化的。
三是频率。如底鼓样片的低频音段会有很多,因其直径长,造成鼓声小而低沉。为了让机器学习算法学会这一点,需要将不同频率范围内的声音响度特征分类。
四是音高。尽管鼓是一款打击乐器,但仍可以调到各种音高。为了量化这种调整,可以采用样本的基频来帮助算法区分低音和高音。
接下来,就开始训练数据了。
据了解,Peter 从数万个样本中选取了大概每种乐器 20~30 个样本量,基本分为以下三种类型:一是每种乐器的不同类型的样本,如声学鼓、电子鼓;二是不同来源的音乐样本;三是非鼓声的音乐样本。
然后,他列出了 100 个样本夹,将大概 50 兆字节的样本数据归置于 5 个单独文件夹中,分别是:底鼓、小鼓、军鼓、踩镲、以及其他。
1、执行特征提取
据了解,这个 Python 库是由音频分析师 Brain McFee 等人创建的 librosa 。
(附上GitHub上的代码链接:https://github.com/psobot/machine-learning-for-drummers)
2、将提取特征保存在JSON文件夹中
以决策树为例,这是一种常见的机器学习算法,并不涉及“神经网络”、“深度学习”的范畴。简言之,决策树是一种以递归方式学习每个特征的阈值并将数据分类的系统。
Peter 创建了一个决策树模型 classifier.py,其权重由导入的数据通过统计决定。以下为可视化模型:
每个新样本都传递到该决策树中,并对提供的特征进行由上到下的评估。例如,如果新样本为average_eq_2_10 ≤ -56.77 (如图中的顶部块所示),则决策树将向左移动,然后检查其fundamental_5 特征。
如果执行 classifier.py ,会呈现两个列表:一是训练准确率(模型预测训练期间出现过的样本的准确率),二是测试准确率(模型预测训练期间未出现过的样本的准确率)。
据了解,Peter 分别获得了 100% 和 87% 的准确率。
在他看来,13% 的错误率可能是过度拟合导致,因此,为了避免出现这种可能性,他采取了以下三种方式:
调整算法参数以使其不会太具体。
改变特征计算以便给算法注入更多数据,这部分数据或许对人类来说并不敏感,但在数学上有助于解决分类问题。
添加更多多样化的数据,以便决策树算法可以创建一种更通用的树,前提是现有数据并不完整。
最后,附上这位小哥哥个人照,
以及博客链接:
http://blog.petersobot.com/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01