京公网安备 11010802034615号
经营许可证编号:京B2-20210330
非互联网从业者:大数据给我工作与思维带来的变革
第一次听到Big Data/大数据还是在欧洲念商学院的时候,有一门课叫做《管理咨询》。教授看了2012年10月的《哈佛商业评论》,兴致勃勃的对我们说,小组期末作业(当时我们的是一个市场预测项目)所有的分析都必须基于更多的数据。用他的话说:“只有你无情的虐数据,它才会乖乖的告诉你,你想了解的信息”。同时他也提到,利用部分信息的不可获得性来进行信息倒卖的生意,在以后会越来难做。
这些天读了维克托•迈尔•舍恩伯格(Viktor Mayer-Schönberger)的《大数据时代》有一些感触。我现在的工作虽然不在咨询公司,但也涉及对企业行业的判断与预期,因此从管理/商业的角度来说说这一趋势对我的工作与思维带来的影响:
1、数据的意义:
举最贴近我的例子,我研究生是学“项目管理”的,这门学科中有一个技术或者说方法叫做 Earned Value(EV)/挣值,通过项目经理制定收集和发亏信息的范围、方式和频率,由项目中具体操作人员进行数据采集、粗加工和反馈。基于这些被初步加工过的数据,项目经理可以了解到诸如项目是否超支、是否延期等信息。除了与利益相关人交流外,这些信息本身是没有作用的,它们的作用于价值是体现在“应该触发/不触发相应的行动进行干预和调整”上,也就是用这些数据进行预测从而实现干预以获得理想的结果。
从企业管理的角度看,虽然不同的利益相关人(比如股东、管理者、监管部门、公司员工)对企业有不同的期待与要求,审计对他们的作用是相似的:财务数据是否真实可靠?能否利用这些数据进行决策? 市场数据、人力数据、科研数据等也是类似——我们关注数据的真实性最终还是希望能用这些数据进行预测与决策,而不是数据本身。
我们关注企业领导者对其企业战略、组织架构和流程的描述最终是需要相应的数据进行支持,从而判断这个企业能否构筑一条“路”通向其所期待的终点。因此战略决策、投资决策和管理改进的决策都将基于这些预测。
2、我们对数据的态度:
作为一个非财务学生/工作者,在我接触这类学科时,了解到会计/财务使用的数据应满足:相关性、可靠性、可比性和可理解性。考虑到财务数据的特殊性,其他数据还应考虑透明性(并非所有数据都是一手的)和准确性(并非所有数据都有明确的获取和储存标准与流程)。
用作者的话说,对数据的衡量标准为:正确性、准确性、严格度和纯洁性。
在目前的趋势下,数据透明性有较大的提高(由于互联网的作用,很多信息变得可以获得了)那么我们对数据其他方面的容忍度也会下降或者说也不得不下降。这体现在我们被暴露在更多的数据下,会发现很多以前所没有关注和思考过的问题,而处理和解决这些问题方法也许也是我们之前所没有的。比如我们为了在A和B两个方面进行论证而收集数据,而为了A方面而收集的数据又揭示了B方面可能存在的问题。这部分数据相对B方面而言是不准确或者说不严格的(从数据来源与采集方式等角度来看),但其意义又是不容忽视的。
因此创新精神(如何发现新问题、展开新思考和采用新办法)以及相应的知识管理(如果再次遇到,我们应当如何处理),又显得尤为重要了。这也是我对舍恩伯格提到的三个趋势的理解:
3、在这一趋势下,我们能做什么?
回国后参加过一家在地产咨询界赫赫有名的咨询公司的面试,最后决定我放弃这个offer的原因只是那个经理人的一句话。当时我问他,他们公司拥有怎样的数据库,他们在项目中会用怎样的方法对数据本身进行加工。他给到我的回答是:在大环境下,很多信息是非公开的,因此不需要拥有很多的信息或对信息进行加工,它们本身就是可以卖钱的。而我的理解是作者认为大数据价值链将有三类角色,即掌握海量数据的公司、提供数据分析能力的技术公司以及提供思维的公司和个人。目前看来应该是掌握数据的公司,因为现阶段很多数据还是不可得的或者不能有效收集的,因此这类公司可以授权相关的公司来分析数据。而技术分析公司虽有可转移的的技术,可却很难再进行海量数据的收集。
而从我的角度来看,最重要的是第三类公司,因为前两者只是资源的储备者,而第三类公司才是资源与价值的转化者。在信息透明度仍在提高的进程中,我们更加关注的应当是如何利用好已有数据进行认知、预测、判断与决策。
引用作者的话,“正在发生的未来”,“更好地方法和答案还在不久的将来”。以上是我一些粗浅的见解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03