
MATLAB vs. Python | 选择 MATLAB 用犹豫吗
基于矩阵的 MATLAB 语言让数学直观易读。
工程师和科学家需要能够直观表达矩阵和数组数学运算的编程语言,而非通过通用编程实现的编程语言。
Python 中的矩阵数学需要执行函数调用,而非自然算子。您必须对标量、1-D 矩阵和 2-D 矩阵之间的差异进行跟踪。即使在最简单的 Python 代码中做到这一点也很困难,下图中Python 代码里的错误你能找到吗?
在 Python 代码的第 2 行有一个非常微小的错误。在原始代码中,行是 1-d 矩阵。它看起来像行向量,但却没有足够的维数来说明是行还是列——只能表明是 1-d 矩阵。由于没有第二个维度,第三行中的转置没有效果。而 MATLAB 不会对标量、1-d 矩阵、2-d 矩阵和多维数组进行人为区分。
使用 MATLAB 语言编写相同的示例,你会发现 MATLAB 在表达计算数学方面更加自然。由此可见,MATLAB 中的线性代数与教科书中的线性代数更接近,在数据分析、信号和图像处理、控制设计以及其他应用中也是一样。这也是超过 1,800 本教科书中使用 MATLAB 的原因。
◆◆ ◆ ◆
MATLAB 适合工程师和科学家的工作方式。
Python 的函数通常由高级编程人员为其他编程人员设计开发,并撰写文档。Python 为科学计算提供的开发环境缺乏桌面版 MATLAB 所具备的可靠性和集成能力。
MATLAB 则是为工程师和科学家量身定制的:
“使用 MATLAB,我能够以远超其他语言的速度编写新功能的代码并调试代码错误,将开发时间缩短一半,这对于满足较短的交付周期很有帮助。当客户看到结果后,他们会认为我每周工作 70 小时。”
——Bancroft Henderson,EMSolutions
◆◆ ◆ ◆
成熟的 MATLAB 工具箱为工程师和科学家所用。
无论是对经济数据建模、分析图像序列,还是操控机器人,都需要编程语言支持您使用的特定工具。这些工具不仅要正常工作,也需要完美配合。
Python 依靠社区创作的工具包为科研和工程应用提供功能,它们在质量和功能上千差万别。每个都有其独立的文档,工程师需要花费大量的时间整合一份解决方案。
与 Python 不同的是,MATLAB 工具箱为科学和工程应用提供经过专业开发、严格测试、市场验证和完备文档描述的功能。各个工具箱相互配合,也可以与并行计算环境、GPU 和自动 C 代码生成整合。它们同步更新,完全不必担心库版本不兼容的问题。
◆◆ ◆ ◆
相比自定义编程,MATLAB 应用程序完成任务更轻松。
Python 不会为科研和工程应用提供支持一体化工作流程的应用程序,而是需要自定义编程。这会延缓研发进度,尤其是对于那些高度迭代的工作流程来说。
MATLAB 应用程序可以让您立即开始工作。这些交互式应用程序提供对大量算法集的直接访问并可以实时提供可视化反馈。您可以尝试新的曲面拟合算法、滤波器设计技术或机器学习分类算法,并且实时获取数据的运算结果。您可以在获得所需结果之前反复迭代,然后自动生成 MATLAB 程序,以便对您的工作进行重制或自动处理。
使用分类学习器应用程序进行模型验证和评估。
◆◆ ◆ ◆
使用 MATLAB 轻松实现从研发到生产的全流程自动化。
重大的工程和科学挑战需要团队间的广泛合作,集思广益使想法付诸实施。在这过程中的每次交付都会增加错误和延迟的风险。
与 Python不同,MATLAB 可在整个工作流程中为团队提供帮助:
◆◆ ◆ ◆
MATLAB 更快,这意味着更多想法的实现以及解决更棘手的问题。
毋庸置疑,MATLAB 在处理统计、工程计算和数据可视化的常见科学计算任务时比 Python 更快。图表中列出了基准测试结果。
Python 代码需要使用重叠和冲突的附加功能来获得性能优势,如即时编译和显式并行编程。这些解决方案往往不完整,或者仅适用于高级编程人员。
MATLAB 承担了加速代码运行速度的艰巨任务。数学运算分布在计算机的各个内核中、库调用得到了高度优化,所有代码实时编译。只需要添加3 个字符“par”到“for”,您就可以将 for 循环更改为并行 for 循环或将标准数组更改为 GPU 或分布式数组来以并行方式运行算法。无需更改代码,即可在可无限扩展的公共云或私有云上运行并行算法。
对比 MATLAB 和 Python 在统计、工程计算和数据可视化等领域的科学计算任务中的执行时间。每个点代表每种语言中单次测试运行的时间。
◆◆ ◆ ◆
MATLAB 提供可信赖的运算结果。
工程师和科学家信赖 MATLAB 帮他们将宇宙飞船送往冥王星、使接受器官移植的患者与器官捐献者匹配,或者只是为管理层编制一份报告。这份信任建立在无差错的数值计算上,来自于 MATLAB 在数值分析研究领域的强大根基和完美表现。
MathWorks 的工程师团队每天会对 MATLAB 代码库运行数百万次测试,持续不断验证代码的质量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18