
哪些情况会让数据科学家抓狂
哪些情况会让数据科学家抓狂
如今,人们对数据科学的热情高涨。只要在产品介绍中加入"由人工智能驱动",就能极大地促进产品的销量。
但是,问题也接踵而至。
数据科学在营销时常常会夸大其词。从而,客户也大大提高了期望值。但最终,数据科学需要尽力去实现客户的高期望。
在本文中,我们将讨论机器学习项目中八个让数据科学家抓狂的常见问题,以及为什么这些问题让数据科学家苦恼不已。
如果你也处于数据科学领域,或者考虑进入该领域,那么明确这些问题能帮助你更好做出判断并进行处理。
1. 我们想要一个AI 模型来解决问题
行业中80%的问题都可以通过简单的探索性数据分析解决。如果在解决某些问题时用机器学习都有些大材小用,那么根本不用再考虑用AI了。
是的,高级分析很高大上。企业都喜欢通过对这方面的投资在行业中处于领先地位。哪家公司不想宣传一下 AI 项目呢?但需要对客户进行基本的说明,采用适当的行业用例。
“到目前为止,人工智能的最大危险在于人们过早的认为他们已经充分理解它了。”
—— Eliezer Yudkowsky
2. 通过一些数据得出变革性的分析见解
通常客户认为,他们只需要提交数据就可以了。有些客户甚至不会提供相关问题的定义,具体可以看到第四点。他们要求数据分析师获取数据,并得出变革性的商业见解,从而能够在一夜之间改变企业的发展方向。
不幸的是,数据科学家无法单独得出可操作的商业建议。这需要与客户进行持续有效的交流,从而全面了解企业的情况。在整个项目期间,定期与业务人员进行规划是很重要的。
“如果你不知道如何提出正确的问题,那么你将一无所获。”
—— W. Edward Deming
3. 构建模型,并跳过不必要的分析来节省时间
许多数据分析师忽略了数据整理和探索性分析的重要性。
数据分析是机器学习和其他更高层次分析的必要步骤。如果不了解数据,不去发现异常值或潜在模式,那么模型将一无是处。因此必须为分析预留时间,并与客户分享有价值的发现。
“炼金术士在寻找黄金时会发现其他许多更有价值的东西。”
—— Arthur Schopenhauer
4. 根据上周的数据,你能预测未来6个月的数据吗?
这是数据科学家们最讨厌的情况。客户在电子表格中提供了几行数据,并希望 AI 能够预测未来。有时更夸张,在没有任何数据时,客户想知道机器学习是否能填补这些数据的空白。
数据质量和数量至关重要,“垃圾进,垃圾出”适用于数据分析。有用的统计技术有助于处理数据问题,并能在你提供的少量数据中得出更多的结论。例如,估算缺失点,生成数据或使用较小的简单模型。但这需要降低客户对结果的预期。
分析技术与数据量的关系,来源:吴恩达
5. 你能在两周内完成建模项目吗?
许多项目的规定时间十分紧迫。这种高强度的项目安排常常会给模型工程阶段带来影响。随着模型API和GPU计算的出现,客户想知道到底时什么减慢了缓数据科学家的速度。
尽管自动化机器学习取得了进步,但在建模过程中手动操作也是必不可少的。数据科学家必须在痛苦的迭代中检查统计结果,比较模型和检查解释。这些是不能自动化的,起码现在还不能。这方面最好通过案例跟客户说明。
6. 你能替换输出变量并刷新吗?
在数据科学家解决了商业行为的建模问题之后,新的请求即将出现,也就是最后的小变化。通常是替换输出变量,然后重新运行模型。客户意识不到这些变化不仅会改变目标,而且会改变整个模型。
虽然机器学习是高度迭代的,但关键挑战是为给定的输出变量选择正确的影响因素,并映射它们间的关系。客户必须了解这背后的基本工作原理,以及明确他们可以调控的范围。
7. 模型的准确度可以达到100%吗?
人们经常会对错误率产生误解,而且容易盲目追求测试等级。有些客户甚至希望准确度达到100%。当准确度超过其他因素成为唯一的关注点时,这就很令人担忧了。建立一个过于复杂却无法实现的高准确度模型有什么意义呢?
以高准确度赢得Netflix奖的模型从未正式上线,因为高度的复杂性会带来巨大的工程成本,反而准确度较低的模型则会被采用。因此在考虑准确度时,要权衡简单性、稳定性和业务可解释性。
模型工程:权衡各方面的因素
8. 训练好的模型能一直不出问题吗?
在艰辛地完成建模和测试之后,客户想知道机器是否已经掌握了所有内容。常见的问题是模型是否能一直不出问题,并且适应未来业务的变化?
不幸的是,机器不能终身学习。需要进行不断地训练,通常需要每隔几周或几个月进行复习和训练,就像寒窗苦读的学子一样。如今的分析行业在迅速发展,瞬息万变,因此模型也需要不断进行维护和更新。
结语
在机器学习项目中,以上八大误区会让数据科学家头疼不已,在机器学习建模生命周期的六个阶段也会出现类似问题,如下图所示。
机器学习项目生命周期
导致上述误区的原因在于缺乏对项目的了解,以及没有正确把握主次。了解背后这些原因的数据科学家需要对客户进行更好的说明,从而双方能够更好得解决难题,而不是一味的妥协。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01