
数据模型需要多少训练数据
毫无疑问机器学习是大数据分析不可或缺的一部分,在使用机器学习技术的时候工程师除了要选择合适的算法之外还需要选择合适的样本数据。那么工程师到底应该选择哪些样本数据、选择多少样本数据才最合适呢?来自于Google的软件工程师Malay Haldar最近发表了一篇题为《数据模型需要多少训练数据》的文章对此进行了介绍。
训练数据的质量和数量通常是决定一个模型性能的最关键因素。一旦训练数据准备好,其他的事情就顺理成章了。但是到底应该准备多少训练数据呢?答案是这取决于要执行的任务,要满足的性能,所拥有的输入特征、训练数据中的噪音、提取特征中的噪音以及模型的复杂程度等因素。而找出这些变量之间相互关系的方法就是在不同数据量的训练数据上训练模型并绘制学习曲线。但是这仅仅适合于已经有一定数量的训练数据的情况,如果是最开始的时候,或者说只有很少一点训练数据的情况,那应该怎么办呢?
与死板地给出所谓精确的“正确”答案相比,更靠谱的方法是通过估算和具体的经验法则。例如本文将要介绍的实证方法:首先自动生成很多逻辑回归问题。然后对生成的每一个问题,研究训练数据的数量与训练模型的性能之间的关系。最后通过观察这两者在这一系列问题上的关系总结出一个简单的规则。
生成一系列逻辑回归问题并研究不同数据量的训练数据所造成的影响的代码可以从GitHub上获取。相关代码是基于Tensorflow实现的,运行这些代码不需要任何特殊的软件或者硬件,用户可以在自己的笔记本上运行整个实验。代码运行之后生成的图表如下:
其中,X轴是训练样本的数量与模型参数数量的比率。Y轴是训练模型的得分(f-score)。不同颜色的曲线表示不同参数数量的模型。例如,红色曲线代表模型有128个参数,曲线的轨迹表明了随着训练样本从128 x 1到 128 x 2并不断增长的过程中该模型的得分变化。
通过该图表,我们能够发现模型得分并不会随着参数规模的变化而变化。但是这是针对线性模型而言,对于一些隐藏的非线性模型并不适合。当然,更大的模型需要更多的训练数据,但是对于一个给定的训练模型数量与模型参数数量比率其性能是一样的。该图表还显示,当训练样本的数量与模型参数数量的比率达到10:1之后,模型得分基本稳定在0.85,该比率便可以作为良好性能模型的一种定义。根据该图表我们可以总结出10X规则,也就是说一个优秀的性能模型需要训练数据的数量10倍于该模型中参数的数量。
10X规则将估计训练数据数量的问题转换成了需要知道模型参数数量的问题。对于逻辑回归这样的线性模型,参数的数量与输入特征的数量相等,因为模型会为每一个特征分派一个相关的参数。但是这样做可能会有一些问题:
由于正则化和特征选择技术,很多特征可能会被抛弃,因而与原始的特征数相比,真正输入到模型中的特征数会非常少。
避免这些问题的一种方法是:必须认识到估算特征的数量时并不是必须使用标记的数据,通过未标记的样本数据也能够实现目标。例如,对于一个给定的大文本语料库,可以在标记数据进行训练之前通过生成单词频率的历史图表来理解特征空间,通过历史图表废弃长尾单词进而估计真正的特征数,然后应用10X规则来估算模型需要的训练数据的数据量。
需要注意的是,神经网络构成的问题集与逻辑回归这样的线性模型并不相同。为了估算神经网络所需要的参数数量,你需要:
如果输入是稀疏的,那么需要计算嵌套层使用的参数的数量。参照word2vec的Tensorflow教程示例。
计算神经网络中边的数量
由于神经网络中参数之间的关系并不是线性的,所以本文基于逻辑回归所做的实证研究并不适合神经网络。但是在这种情况下,可以将10X规则作为训练数据所需数据量的下限。
尽管有上面的问题,根据Malay Haldar的经验,10X规则对于大部分问题还是适用的,包括浅神经网络。如果有疑问,可以在Tensorflow的代码中插入自己的模型和假设,然后运行代码进行验证研究。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28