
神经网络测试结果很差,该怎么做
当我们编程实现了神经网络模型,将模型用于测试集时,经常会发现测试的准确率非常的低,神经网络层数很深,通常我们不容易判断具体的梯度下降求解参数的过程,那我们该怎么办呢?从机器学习视频中总结的办法!!小程序亲身体验过!
首先要明白,测试集上的准确率低并不一定是过拟合。有可能在训练集上准确率就很低,也就是说你的模型压根没有训练好!!
所以:首先,要用训练好的模型在训练集上跑一遍,如果在训练集上准确率就很低,那么就不是过拟合,而是欠拟合。
原因是在梯度下降求导时,卡在了local minima(在求导为0,是极小值),saddle point(求导为0,不是极小值),plateau(求导近似为0)上。
解决这个问题可以有两个做法:1是改变激活函数;2是改变梯度下降求导方式;后边会详细讲。
然后:如果在训练集上准确率很好,在测试集上准确率低,那么就是过拟合(overfitting)。
解决办法是:1是早点停止梯度更新;2是更多的数据(通过数据增强获得更多数据);3是正则化(l1-torm和l2-torm);4是Dropout方法。下边将详细介绍。
解决欠拟合的1方法:改变激活函数。一定程度上,欠拟合是因为激活函数选择了sigmoid函数。对于sigmoid函数来说,致命的问题就是梯度消失,sigmoid会衰减输入。梯度消失的含义是:在靠近输出层的参数更新梯度很大,在靠近输入层的参数更新梯度很小,导致在学习率一致的情况下,在靠近输出层的后几层参数更新快,在已经收敛的时候,靠近输入层参数更新很慢,还是接近随机状态,使得靠近输出层参数接收的input接近随机。
我们换用RELU激活函数就可以解决梯度消失的问题。在input<0时,output = 0, 在input>0时,output = input,这样在计算时,参数会少于整体神经元个数,RELU计算很快。Leaky RELU、Parametric RELU等是RELU的变种,用RELU可以解决一般欠拟合。
另外maxout也是一种激活函数,RELU是maxout的一种特例,它可以实现每个神经元都有自己不同的激活函数,但是maxout参数多于其他激活函数(因为每有一个输出,都要在一组给定数目的输出(参数)中选择一个最大的作为输出,而其他的激活函数,都是给一组参数,产生一个输出)。虽然参数变多了,但是在训练时,我们梯度下降只更新一组输出中选出的那个输出对应的参数!!!!并且训练集数据很多,每个数据都会梯度更新不同的参数。maxout是根据数据自动学习权重,模型参数训练好了,模型固定了,也就得到不同的激活函数。
解决欠拟合方法2:改变梯度下降策略;
可以尝试其他的梯度下降函数,比如Adagrad、RMSProp、Momentum、Adam(=Momentum+RMSProp),它们按照一定权重考虑了新梯度值和旧梯度值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18