
神经网络从原理到实现
1.简单介绍
在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural
network,缩写NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:
结构 (Architecture)结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。
激励函数(Activity Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。
学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。
2.初识神经网络
如上文所说,神经网络主要包括三个部分:结构、激励函数、学习规则。图1是一个三层的神经网络,输入层有d个节点,隐层有q个节点,输出层有l个节点。除了输入层,每一层的节点都包含一个非线性变换。
图1
那么为什么要进行非线性变换呢?
(1)如果只进行线性变换,那么即使是多层的神经网络,依然只有一层的效果。类似于0.6*(0.2x1+0.3x2)=0.12x1+0.18x2。
(2)进行非线性变化,可以使得神经网络可以拟合任意一个函数,图2是一个四层网络的图。
图2
下面使用数学公式描述每一个神经元工作的方式
(1)输出x
(2)计算z=w*x
(3)输出new_x = f(z),这里的f是一个函数,可以是sigmoid、tanh、relu等,f就是上文所说到的激励函数。
3.反向传播(bp)算法
有了上面的网络结构和激励函数之后,这个网络是如何学习参数(学习规则)的呢?
首先我们先定义下本文使用的激活函数、目标函数
(1)激活函数(sigmoid):
def sigmoid(z):
return 1.0/(1.0+np.exp(-z))
sigmoid函数有一个十分重要的性质:,即计算导数十分方便。
def sigmoid_prime(z):
return sigmoid(z)*(1-sigmoid(z))
下面给出一个简单的证明:
(2)目标函数(差的平方和),公式中的1/2是为了计算导数方便。
然后,这个网络是如何运作的
(1)数据从输入层到输出层,经过各种非线性变换的过程即前向传播。
def feedforward(self, a):
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a
其中,初始的权重(w)和偏置(b)是随机赋值的
biases = [np.random.randn(y, 1) for y in sizes[1:]]
weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]
(2)参数更新,即反向传播
在写代码之前,先进行推导,即利用梯度下降更新参数,以上面的网络结构(图1)为例
(1)输出层与隐层之间的参数更新
(2)隐层与输入层之间的参数更新
有两点需要强调下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28