京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简介Python设计模式中的代理模式与模板方法模式编程
这篇文章主要介绍了Python设计模式中的代理模式与模板方法模式编程,文中举了两个简单的代码片段来说明,需要的朋友可以参考下
代理模式
Proxy模式是一种常用的设计模式,它主要用来通过一个对象(比如B)给一个对象(比如A) 提供'代理'的方式方式访问。比如一个对象不方便直接引用,代理就在这个对象和访问者之间做了中介
python的例子
你先设想:一个对象提供rgb三种颜色值,我想获得一个对象的rgb三种颜色,但是我不想让你获得蓝色属性,怎么办?
class Proxy(object):
def __init__(self, subject):
self.__subject = subject
# 代理其实本质上就是属性的委托
def __getattr__(self, name):
return getattr(self.__subject, name)
class RGB:
def __init__(self, red, green, blue):
self.__red = red
self.__green = green
self.__blue = blue
def Red(self):
return self.__red
def Green(self):
return self.__green
def Blue(self):
return self.__blue
class NoBlueProxy(Proxy):
# 我在这个子代理类拦截了blue的访问,这样就不会返回被代理的类的Blue属性
def Blue(self):
return 0
if __name__ == '__main__':
rgb = RGB(100, 192, 240)
print rgb.Red()
proxy = Proxy(rgb)
print proxy.Green()
noblue = NoBlueProxy(rgb)
print noblue.Green()
print noblue.Blue()
模板方法模式
不知道你有没有注意过,我们实现某个业务功能,在不同的对象会有不同的细节实现, 如果说策略模式, 策略模式是将逻辑封装在一个类(提到的文章中的Duck)中,然后使用委托的方式解决。 模板方法模式的角度是:把不变的框架抽象出来,定义好要传入的细节的接口. 各产品类的公共的行为 会被提出到公共父类,可变的都在这些产品子类中
python的例子
# 整个例子我们要根据不同需求处理的内容
ingredients = "spam eggs apple"
line = '-' * 10
# 这是被模板方法调用的基础函数
def iter_elements(getter, action):
"""循环处理的骨架"""
# getter是要迭代的数据,action是要执行的函数
for element in getter():
action(element)
print(line)
def rev_elements(getter, action):
"""反向的"""
for element in getter()[::-1]:
action(element)
print(line)
# 数据经过函数处理就是我们最后传给模板的内容
def get_list():
return ingredients.split()
# 同上
def get_lists():
return [list(x) for x in ingredients.split()]
# 对数据的操作
def print_item(item):
print(item)
#反向处理数据
def reverse_item(item):
print(item[::-1])
# 模板函数
def make_template(skeleton, getter, action):
# 它抽象的传入了 骨架,数据,和子类的操作函数
def template():
skeleton(getter, action)
return template
# 列表解析,数据就是前面的2种骨架(定义怎么样迭代),2个分割数据的函数,正反向打印数据的组合
templates = [make_template(s, g, a)
for g in (get_list, get_lists)
for a in (print_item, reverse_item)
for s in (iter_elements, rev_elements)]
# 执行
for template in templates:
template()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03