京公网安备 11010802034615号
经营许可证编号:京B2-20210330
都在说区块链3.0,最终谁会成为引领者
当很多人还没弄清楚什么是区块链时,已经有专家提出区块链3.0的概念了。一波小白们被刷新得云里雾里,搞不明白区块链3.0解决了什么问题,靠什么来赚钱,也不知道谁会成为引领者。小姐姐想说这些都不重要,重要的是大家懂得CyberVein是区块链3.0的代表就好了(偷笑),开个玩笑,还是来点干货吧~~
区块链1.0,数字货币时代,让交易变得可信
以比特币为代表的虚拟货币,给我们勾勒了一个理想的场景——全球统一货币。基本理念是这样的:比特币总量稀缺,获取成本越来越高,并且不能伪造,符合天然货币的定义,就像现在的黄金。但是虚拟货币去中心化地自由流通,匿名交易这些特点使得它难以监管,发展的阻力重重。
区块链2.0,智能合约时代,让代码变得可信
以太坊为代表的智能合约平台将区块链推进到2.0时代,2.0时代是对金融领域更广泛的场景和流程进行优化的应用。比方说,A想要买B的房子,跟B说了买房的想法后,B告诉A说,房子还在租赁阶段,租客还有两个月的租期,因此无法立即交易。但两个月之后,A会有事在国外,没办法和B见面办理房屋所有权的转让手续。他们商量之后决定在以太坊上建立一个关于房产转让的智能合约,规定:两个月后,租客的租约合同履行完成后,A把房子的钱打到B所属的钱包中,B的房屋所有权便立即转让于A的名下。这里的智能合约自动执行了一个关于房屋买卖的合同。与1.0的比特币不同,以太坊更多地被传播为是一种二次开发的“平台”,有意弱化“货币”定位,从而可能受到更小的政府阻力。
区块链3.0,价值服务时代,让数据变得可信
区块链3.0将和互联网一样,成为基础设施,应用到更广阔的领域,覆盖人们的日常生活。最明显特点是不再依靠某个第三人或机构获得信任或建立信用,还有节约人力和时间成本,提升效率。还将实现信息的共享,应用在金融、司法、医疗、物流、房产、艺术、收藏等各种领域。
区块链1.0让转账交易变得可信,2.0让编程代码变得可信,那么处在3.0时代的CyberVein就是要让数据变得可信,变得更有价值,从而引领这个时代!
在日常应用中,我们的数据经常被无偿利用,甚至埋下各种坑:比如当我们用手机或者接受某种服务的时候,各种应用都需要点击允许或者同意,收集我们的公开信息、头像、好友、位置等等,如果拒绝,我们就接受不了这种服务,如果这个服务是刚需,我们必须牺牲个人信息。再比如当我们打开电商平台,都会弹出来各种“精准推送”,但这可能是精准“杀熟”。网络营销通过数据能分析出我们个人的喜好、需求以及需求的欲望,还有财力、对价格的敏感性,甚至通过这些分析针对不同用户标注产品的不同价格。
除了我们的数据价值被机构无偿利用、被薅羊毛,对于数据的不信任感又导致了数据孤岛,数据共享没有形成一个共识。
这就是目前存在的一个悖论:大数据无所不能,但是我们却不知道如何让数据变得可信,产生更大的价值!CyberVein的设计理念和商业应用就是通过区块链技术来解决这个悖论。
第一,CVT代币的实际经济价值和应用场景让无偿被贡献数据变得主动且有偿。举个例子,在一个实验项目中可能需要多个实验室共同完成,每个实验室都可以把有用的实验数据共享在同一个数据库中,并制定贡献数据者可获取Token的数量,而数据使用者要支付Token,数据使用者所得的分析结果又能重新被共享来获得Token。在这个过程中,贡献数据的人遵循市场行为获得了相应的“报酬”,其积极性自然就会有所提高,主动加入到数据共享的生态中来。再加上共享的数据本身也会“优胜劣汰”,贡献真实数据的一方形成良性循环,数据被信任的程度也会与日俱增,而CVT充当的“燃料”则保障了整个生态的有序运行。
第二,开发自己的编程语言Vein和虚拟机CVVW,用区块链的思维来做数据库,确保数据的真实、可溯源和不可篡改。CyberVein完全打破原有的数据库构造,把原来对于数据库的操作流转变为区块链中的一条交易,再用原本只用于传统操作系统的虚拟机把这些交易跑成数据库。这样一来,数据库就具备了区块链的特点:真实、可溯源和不可篡改。现已有8家来⾃全球各地的⼤数据应⽤机构、银⾏、医疗机构提出合作意向,并希望能够将数据库搭建在CyberVein的公链上,以确保其安全性和公平性。
引领区块链3.0,让数据变得可信,为学术研究和实验室数据、智慧城市、大数据分析、DNA序列、供应链、数据流网络、人工智能等行业和领域带来更多价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17