
Python生成随机数组的方法小结
本文实例讲述了Python生成随机数组的方法。分享给大家供大家参考,具体如下:
研究排序问题的时候常常需要生成随机数组来验证自己排序算法的正确性和性能,今天把Python生成随机数组的方法稍作总结,以备以后查看使用。
一、使用random模块生成随机数组
python的random模块中有一些生成随机数字的方法,例如random.randint, random.random, random.uniform, random.randrange,这些函数大同小异,均是在返回指定范围内的一个整数或浮点数,下边简单解释一下这几个函数。
1、random.randint(low, hight) -> 返回一个位于[low,hight]之间的整数
该函数接受两个参数,这两个参数必须是整数(或者小数位是0的浮点数),并且第一个参数必须不大于第二个参数
>>> import random
>>> random.randint(1,10)
5
>>> random.randint(1.0, 10.0)
5
2、random.random() -> 不接受参数,返回一个[0.0, 1.0)之间的浮点数
>>> random.random()
0.9983625479554628
3、random.uniform(val1, val2) -> 接受两个数字参数,返回两个数字区间的一个浮点数,不要求val1小于等于val2
>>> random.uniform(1,5.0)
2.917249424176132
>>> random.uniform(9.9, 2)
3.4288029275359024
*4、random.randrange(start, stop, step) -> 返回以start开始,stop结束,step为步长的列表中的随机整数,同样,三个参数均为整数(或者小数位为0),若start大于stop时 ,setp必须为负数.step不能是0.*
>>> random.randrange(1, 100, 2) #返回[1,100]之间的奇数
95
>>> random.randrange(100, 1, -2) #返回[100,1]之间的偶数
46
运行效果图如下:
5、生成随机数组
下边我们用random.randint来生成一个随机数组
import random
def random_int_list(start, stop, length):
start, stop = (int(start), int(stop)) if start <= stop else (int(stop), int(start))
length = int(abs(length)) if length else 0
random_list = []
for i in range(length):
random_list.append(random.randint(start, stop))
return random_list
接下来我们就可以用这个函数来生成一个随机的整数序列了
>>> random_int_list(1,100,10)
[54, 13, 6, 89, 87, 39, 60, 2, 63, 61]
二、使用numpy.random模块来生成随机数组
1、np.random.rand 用于生成[0.0, 1.0)之间的随机浮点数, 当没有参数时,返回一个随机浮点数,当有一个参数时,返回该参数长度大小的一维随机浮点数数组,参数建议是整数型,因为未来版本的numpy可能不支持非整形参数。
import numpy as np
>>> np.random.rand(10)
array([ 0.56911206, 0.99777291, 0.18943144, 0.19387287, 0.75090637,
0.18692814, 0.69804514, 0.48808425, 0.79440667, 0.66959075])
当然该函数还可以用于生成多维数组,这里不做详述。
2、np.random.randn该函数返回一个样本,具有标准正态分布。
>>> np.random.randn(10)
array([-1.6765704 , 0.66361856, 0.04029481, 1.19965741, -0.57514593,
-0.79603968, 1.52261545, -2.17401814, 0.86671727, -1.17945975])
3、np.random.randint(low[, high, size]) 返回随机的整数,位于半开区间 [low, high)。
>>> np.random.randint(10,size=10)
array([4, 1, 4, 3, 8, 2, 8, 5, 8, 9])
4、random_integers(low[, high, size]) 返回随机的整数,位于闭区间 [low, high]。
>>> np.random.random_integers(5)
4
5、np.random.shuffle(x) 类似洗牌,打乱顺序;np.random.permutation(x)返回一个随机排列
>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]
>>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29