京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中使用bidict模块双向字典结构的奇技淫巧
bidict模块通过一对一映射结构的处理为Pyhton带来双向字典,能够更加利用Python的切片功能,这里我们就来学习Python中使用bidict模块双向字典结构的奇技淫巧:
快速入门
模块提供三个类来处理一对一映射类型的一些操作
'bidict', 'inverted', 'namedbidict'
>>> import bidict
>>> dir(bidict)
['MutableMapping', '_LEGALNAMEPAT', '_LEGALNAMERE', '__builtins__', '__doc__', '__file__', '__name__', '__package__', 'bidict', 'inverted', 'namedbidict', 're', 'wraps']
1.bidict类:
>>> from bidict import bidict
>>> D=bidict({'a':'b'})
>>> D['a']
'b'
>>> D[:'b']
'a'
>>> ~D #反转字典
bidict({'b': 'a'})
>>> dict(D) #转为普通字典
{'a': 'b'}
>>> D['c']='c' #添加元素,普通字典的方法都可以用
>>> D
bidict({'a': 'b', 'c': 'c'})
2.inverted类,反转字典的键值
>>> seq = [(1, 'one'), (2, 'two'), (3, 'three')]
>>> list(inverted(seq))
[('one', 1), ('two', 2), ('three', 3)]
3.namedbidict(mapname, fwdname, invname):
>>> CoupleMap = namedbidict('CoupleMap', 'husbands', 'wives')
>>> famous = CoupleMap({'bill': 'hillary'})
>>> famous.husbands['bill']
'hillary'
>>> famous.wives['hillary']
'bill'
>>> famous.husbands['barack'] = 'michelle'
>>> del famous.wives['hillary']
>>> famous
CoupleMap({'barack': 'michelle'})
更多内容
如果你不喜欢冒号的方式,可以使用namedbidict类给双向字典起2个别名。这样对外会提供正向和逆向的2个子字典。实际上还是以一个双向 字典的形式存在:
>>> HTMLEntities = namedbidict('HTMLEntities', 'names', 'codepoints')
>>> entities = HTMLEntities({'lt': 60, 'gt': 62, 'amp': 38}) # etc
>>> entities.names['lt']
60
>>> entities.codepoints[38]
'amp'
还可以使用一元的逆运算符"~"获取bidict逆映射字典。
>>> import bidict
>>> from bidict import bidict
>>> husbands2wives = bidict({'john': 'jackie'})
>>> ~husbands2wives
bidict({'jackie': 'john'})
以下情况注意添加括号,因为~的优先级低于中括号:
>>> import bidict
>>> from bidict import bidict
>>> husbands2wives = bidict({'john': 'jackie'})
>>> ~husbands2wives
bidict({'jackie': 'john'})
以下情况注意添加括号,因为~的优先级低于中括号:
>>> (~bi)['one']
1
bidict不是dict的子类,但它的API的是dict的超集(但没有fromkeys方法,改用了MutableMapping接 口)。
迭代器类inverted会翻转key和value,如:
>>> seq = [(1, 'one'), (2, 'two'), (3, 'three')]
>>> list(inverted(seq))
[('one', 1), ('two', 2), ('three', 3)]
bidict的invert()方法和inverted类似。依赖模块:collections中的MutableMapping,functools中的wraps,re。
bidict可以和字典进行比较
>>> bi == bidict({1:'one'})
>>> bi == dict([(1, 'one')])
True
其他字典通用的方法,bidict也支持:
>>> bi.get('one')
1
>>> bi.setdefault('one', 2)
1
>>> bi.setdefault('two', 2)
2
>>> len(bi) # calls __len__
2
>>> bi.pop('one')
1
>>> bi.popitem()
('two', 2)
>>> bi.inv.setdefault(3, 'three')
'three'
>>> bi
bidict({'three': 3})
>>> [key for key in bi] # calls __iter__, returns keys like dict
['three']
>>> 'three' in bi # calls __contains__
True
>>> list(bi.keys())
['three']
>>> list(bi.values())
[3]
>>> bi.update([('four', 4)])
>>> bi.update({'five': 5}, six=6, seven=7)
>>> sorted(bi.items(), key=lambda x: x[1])
[('three', 3), ('four', 4), ('five', 5), ('six', 6), ('seven', 7)]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27