京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中使用bidict模块双向字典结构的奇技淫巧
bidict模块通过一对一映射结构的处理为Pyhton带来双向字典,能够更加利用Python的切片功能,这里我们就来学习Python中使用bidict模块双向字典结构的奇技淫巧:
快速入门
模块提供三个类来处理一对一映射类型的一些操作
'bidict', 'inverted', 'namedbidict'
>>> import bidict
>>> dir(bidict)
['MutableMapping', '_LEGALNAMEPAT', '_LEGALNAMERE', '__builtins__', '__doc__', '__file__', '__name__', '__package__', 'bidict', 'inverted', 'namedbidict', 're', 'wraps']
1.bidict类:
>>> from bidict import bidict
>>> D=bidict({'a':'b'})
>>> D['a']
'b'
>>> D[:'b']
'a'
>>> ~D #反转字典
bidict({'b': 'a'})
>>> dict(D) #转为普通字典
{'a': 'b'}
>>> D['c']='c' #添加元素,普通字典的方法都可以用
>>> D
bidict({'a': 'b', 'c': 'c'})
2.inverted类,反转字典的键值
>>> seq = [(1, 'one'), (2, 'two'), (3, 'three')]
>>> list(inverted(seq))
[('one', 1), ('two', 2), ('three', 3)]
3.namedbidict(mapname, fwdname, invname):
>>> CoupleMap = namedbidict('CoupleMap', 'husbands', 'wives')
>>> famous = CoupleMap({'bill': 'hillary'})
>>> famous.husbands['bill']
'hillary'
>>> famous.wives['hillary']
'bill'
>>> famous.husbands['barack'] = 'michelle'
>>> del famous.wives['hillary']
>>> famous
CoupleMap({'barack': 'michelle'})
更多内容
如果你不喜欢冒号的方式,可以使用namedbidict类给双向字典起2个别名。这样对外会提供正向和逆向的2个子字典。实际上还是以一个双向 字典的形式存在:
>>> HTMLEntities = namedbidict('HTMLEntities', 'names', 'codepoints')
>>> entities = HTMLEntities({'lt': 60, 'gt': 62, 'amp': 38}) # etc
>>> entities.names['lt']
60
>>> entities.codepoints[38]
'amp'
还可以使用一元的逆运算符"~"获取bidict逆映射字典。
>>> import bidict
>>> from bidict import bidict
>>> husbands2wives = bidict({'john': 'jackie'})
>>> ~husbands2wives
bidict({'jackie': 'john'})
以下情况注意添加括号,因为~的优先级低于中括号:
>>> import bidict
>>> from bidict import bidict
>>> husbands2wives = bidict({'john': 'jackie'})
>>> ~husbands2wives
bidict({'jackie': 'john'})
以下情况注意添加括号,因为~的优先级低于中括号:
>>> (~bi)['one']
1
bidict不是dict的子类,但它的API的是dict的超集(但没有fromkeys方法,改用了MutableMapping接 口)。
迭代器类inverted会翻转key和value,如:
>>> seq = [(1, 'one'), (2, 'two'), (3, 'three')]
>>> list(inverted(seq))
[('one', 1), ('two', 2), ('three', 3)]
bidict的invert()方法和inverted类似。依赖模块:collections中的MutableMapping,functools中的wraps,re。
bidict可以和字典进行比较
>>> bi == bidict({1:'one'})
>>> bi == dict([(1, 'one')])
True
其他字典通用的方法,bidict也支持:
>>> bi.get('one')
1
>>> bi.setdefault('one', 2)
1
>>> bi.setdefault('two', 2)
2
>>> len(bi) # calls __len__
2
>>> bi.pop('one')
1
>>> bi.popitem()
('two', 2)
>>> bi.inv.setdefault(3, 'three')
'three'
>>> bi
bidict({'three': 3})
>>> [key for key in bi] # calls __iter__, returns keys like dict
['three']
>>> 'three' in bi # calls __contains__
True
>>> list(bi.keys())
['three']
>>> list(bi.values())
[3]
>>> bi.update([('four', 4)])
>>> bi.update({'five': 5}, six=6, seven=7)
>>> sorted(bi.items(), key=lambda x: x[1])
[('three', 3), ('four', 4), ('five', 5), ('six', 6), ('seven', 7)]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15