
R语言学习系列之本地数据获取
任何数据分析工作之前,都得把数据先读取进来你才能进行后续的分析工作。所以本文简要介绍在R中如何对本地文件进行获取,希望可以给刚刚接触R语言的同学一点启发。
一、控制台的输入与输出
何为控制台的输入与输出呢?你可以简单的理解成在屏幕上进行操作让数据可以直接输入或输出的方法。
一般输入时采用readline()函数与scan()函数,它们的区别如下:
如上我们可以发现这两个函数的区别,readline()只能输入单个数据,可以为数值也可以为字符串,并且最后会将输入的数据转化为字符串的格式。而scan()可以输入多个数据,但只能是数值,最后会以数值型输出。
一般输出时采用print()与cat()的方法,两个方法的区别是cat()可以将内容粘合起来。如下所示:
如上可以比较,print()就是直接打印,与别的语言打印语句一致。此外,我们建立一个文件链接,文件名为output.txt,之后再用cat()向文件输出数据并且使用制表符‘/t’将内容粘合起来。最后关闭文件链接。才看本地文件存入地址。结果如下:
二、数据表的读写
我们还是使用自带的iris数据集做测试,使用write.table()写入数据,命名为iris.csv ,再使用read.table()将数据集读回来赋给变量data。
在读数据时有两个小技巧:1、当你在读其他路径下的文件时可以采用
read.table(file.choose(),sep = ',')
这样的方法,R会自动弹出一个选择文件框供你选择。2、Windows操作系统下可以直接对需要的数据部分在Excel中复制然后在R中读取。
data <- read.table('clipboard')
注意此方法适用于小数据集,因为计算机的剪切板容量是有限的。
三、数据库的读写
有时候会出现需要读取MySQL数据库中的数据,这里提供给你一些方法与思路。具体如何去操作百度文库里面多得飞起,我就不一一介绍了(好吧,我还是懒!!!)
有两种方法:1、你可以直接将数据库中的数据写个sql语句读出来存入csv文件,再用之前的方法进行读取。2、R也提供直接能够操作数据库的包‘RODBC’。首先你要安装‘RODBC’包,之后下载MySQL ODBC 驱动,再配置ODBC。一切搞定后在R中调用‘RODBC’包,输入数据库访问参数,再写一个sql语句将你需要的数据读出来即可。
四、读取Excel文件
这里总结一下之前读取Excel文件的方法再介绍一个个人认为比较好用的包‘openxlsx’。这个包的读取速度比较快。
读取Excel文件的方法有:1、数据小时,可以使用直接复制在R中采用‘clipboard’的方法,注意此方法适用于Windows用户。2、数据大的时候,将Excel文件存为csv文件再用read.table()的方法进行读取。3、若想直接读写,可以调用‘openxlsx’包
library(openxlsx)
data <- read.xlsx(file.choose(),sheet = 1)
五、如何读取SPSS,SAS中的数据文件
当需要读取SPSS,SAS中的数据时,推荐使用‘foreign’包,其中有大量读取外部数据的函数。
library(foreign)
statadata <- read.dta('c/temp/statafile.dta')
spssdata <- read.spss('c/temp/spssfile.sav')
sasdata <- read.xport('c/temp/sasfile.xpt')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07