
R语言学习系列之本地数据获取
任何数据分析工作之前,都得把数据先读取进来你才能进行后续的分析工作。所以本文简要介绍在R中如何对本地文件进行获取,希望可以给刚刚接触R语言的同学一点启发。
一、控制台的输入与输出
何为控制台的输入与输出呢?你可以简单的理解成在屏幕上进行操作让数据可以直接输入或输出的方法。
一般输入时采用readline()函数与scan()函数,它们的区别如下:
如上我们可以发现这两个函数的区别,readline()只能输入单个数据,可以为数值也可以为字符串,并且最后会将输入的数据转化为字符串的格式。而scan()可以输入多个数据,但只能是数值,最后会以数值型输出。
一般输出时采用print()与cat()的方法,两个方法的区别是cat()可以将内容粘合起来。如下所示:
如上可以比较,print()就是直接打印,与别的语言打印语句一致。此外,我们建立一个文件链接,文件名为output.txt,之后再用cat()向文件输出数据并且使用制表符‘/t’将内容粘合起来。最后关闭文件链接。才看本地文件存入地址。结果如下:
二、数据表的读写
我们还是使用自带的iris数据集做测试,使用write.table()写入数据,命名为iris.csv ,再使用read.table()将数据集读回来赋给变量data。
在读数据时有两个小技巧:1、当你在读其他路径下的文件时可以采用
read.table(file.choose(),sep = ',')
这样的方法,R会自动弹出一个选择文件框供你选择。2、Windows操作系统下可以直接对需要的数据部分在Excel中复制然后在R中读取。
data <- read.table('clipboard')
注意此方法适用于小数据集,因为计算机的剪切板容量是有限的。
三、数据库的读写
有时候会出现需要读取MySQL数据库中的数据,这里提供给你一些方法与思路。具体如何去操作百度文库里面多得飞起,我就不一一介绍了(好吧,我还是懒!!!)
有两种方法:1、你可以直接将数据库中的数据写个sql语句读出来存入csv文件,再用之前的方法进行读取。2、R也提供直接能够操作数据库的包‘RODBC’。首先你要安装‘RODBC’包,之后下载MySQL ODBC 驱动,再配置ODBC。一切搞定后在R中调用‘RODBC’包,输入数据库访问参数,再写一个sql语句将你需要的数据读出来即可。
四、读取Excel文件
这里总结一下之前读取Excel文件的方法再介绍一个个人认为比较好用的包‘openxlsx’。这个包的读取速度比较快。
读取Excel文件的方法有:1、数据小时,可以使用直接复制在R中采用‘clipboard’的方法,注意此方法适用于Windows用户。2、数据大的时候,将Excel文件存为csv文件再用read.table()的方法进行读取。3、若想直接读写,可以调用‘openxlsx’包
library(openxlsx)
data <- read.xlsx(file.choose(),sheet = 1)
五、如何读取SPSS,SAS中的数据文件
当需要读取SPSS,SAS中的数据时,推荐使用‘foreign’包,其中有大量读取外部数据的函数。
library(foreign)
statadata <- read.dta('c/temp/statafile.dta')
spssdata <- read.spss('c/temp/spssfile.sav')
sasdata <- read.xport('c/temp/sasfile.xpt')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16