CDA数据科学研究院 CDA考试中心 CDA人工智能学院 企业服务 关于CDA

cda

全国校区

您的位置:首页 > 课程列表 > CDA大数据就业班(5个月)—推荐就业!

CDA大数据就业班(5个月)—推荐就业!

CDA大数据就业班(5个月)—推荐就业!

难度系数:

课程系列:LEVEL I + LEVEL II


周期: 5个月

29800

立即报名 咨询老师

CDA大数据就业班(5个月)—推荐就业!

 姓名:

 电话:

 邮箱:

   备注:

邀请码:

提交信息
  • WHAT 课程简介

    培训师资目前均来自学界、实务界相关领域的讲师、教授、专家、工程师以及企业资深分析师,名师荟萃。CDA大数据符合企业用人需求,从大数据编程——数据库编程——大数据仓库——大数据分析方法——数据挖掘算法——大数据真实项目应用——大数据解决方案等,主要软件应用Hadoop、HDFS、MapReduce、Hbase、Hive、Sqoop等理论知识和大数据平台生态环境,重点学习数据分析基础和数据挖掘经典算法实现,Spark大数据分析工具和Python完美结合让你事半功倍。
  • WHY 学习目标

    1.零基础脱产学习,5个月学会大数据技术
    2.计算机、统计、数学等专业学习更佳
    3.包学会,成为大数据稀缺人才,高薪就业
    4.CDA大数据就业帮,助你前程似锦
    5.大数据未来已来,只等你改变自己
  • WHO 学习对象和基础

    1.各行业数据分析、数据挖掘从业者
    2.在校数学,计算机,统计等专业教师和学生
    3.经济,医学生物研究院科研人员
    4.数据分析,数据挖掘兴趣爱好者及转行人士



课程案例,项目特训

点击图片任何区域可放大

高速公路收费站各站点每日收费额情况图 ...

案例介绍 将所有数据导入到 mysql 中,同时 hive 中,并编写 spark 程序, 统计出每天的交易额,并输出到 mysql 中,hive 中的数据, 编写 spark 程序,使用漏斗模型统计分析出某日数据增加的原因。 技能涉及 1 检查集群、节点、索引的健康情况 2 管理集群、节点,索引数据、元数据 3 执行CRUD,创建、读取、更新、删除 以及 查询 4 执行高级的查询操作,比如分页、排序、脚本、聚合等
点击图片任何区域可放大

电力大数据实战主界面

案例介绍 基于用户用电行为典型数据,分析用户用电行为轨迹,抽象用户用电特征,输出用户群体的聚类分析结果和典型行为特征。 技能涉及 电力工业统计基础知识,用电负荷特性指标,数据清洗、归一化处理、聚类程序开发、结果分析。
点击图片任何区域可放大

Web网站日志分析案例

案例介绍 使用Flume来完成Apache服务器日志收集工作,并自动上传到指定的HDFS系统中存储,使用MapReduce将HDFS中进行数据清洗,使用Hive对清洗后的数据进行统计分析,使用Sqoop将Hive统计后的数据导出到关系型数据库MySQL,数据可视化技术呈现分析结果。 技能涉及 Hadoop是个可靠的、可伸缩的存储和分析平台,主从架构:1台NameNode,多台DataNode。在map阶段,通常执行输入格式解析、投影(选择相关的字段)和过滤(删除不感兴趣的记录),reduce阶段,一个聚合或汇总的阶段。在这个阶段,map阶段的输出被聚合以产生期望的结果。
点击图片任何区域可放大

电子商务网站用户行为分析

案例介绍 数据导入 mysql 数据库,并用 sqoop 将其传入 hive, 在数据库中做数据清洗处理,进行用户地域分布的大数据分析,绘制用户分布画像,分析用户的刷单行为,进行地域、频次、时间特点进行分析。 技能涉及 建立会员偏好模型(可以使用数理统计和数据挖掘相应的算法),通过 R 与 spark 软件进行协同过滤、 关联规则算法的实现,并比较不同,软件和算法的性能和准确性, 进行效果评估。

1业务分析基础技能

1-1数据分析概述
1-2常用高阶函数
1-3条件格式应用
1-4数据透视表高阶应用
1-5图表进阶
1-6项目排期管理
1-7案例背景介绍
1-8动态考勤表制作
1-9每月考勤统计
1-10考勤汇总统计
1-11常用指标概述
1-12基础指标统计
1-13人力资源指标体系概述
1-14案例背景介绍
1-15员工绩效评定思路解析
1-16实操绩效统计及可视化
1-17案例背景介绍
1-18活动评估报表思路解析
1-19实操活动评估指标统计
1-20指导撰写报表结论
1-21图表应用
1-22零碎需求分析方法论
1-23案例应用-核心产品分析
1-24案例应用-零售业商业智能看板
1-25RFM基础模型及拓展
1-26案例应用-用户画像
1-27树状结构分析方法论概述
1-28案例应用-汽车行业分析报告

2数据库应用技能

2-1数据库简介
2-2表结构的特点
2-3数据库分类
2-4MySQL简介
2-5数据库基本结构
2-6SQL语言分类
2-7SQL书写要求
2-8创建、使用及删除数据库
2-9创建表
2-10数据类型
2-11约束条件
2-12修改及删除表
2-13插入数据
2-14批量导入数据
2-15更新数据
2-16删除数据
2-17查询指定列
2-18查询不重复记录
2-19条件查询
2-20常用运算符
2-21空值查询
2-22设置别名
2-23模糊查询
2-24查询结果排序
2-25限制查询
2-26聚合运算
2-27分组查询
2-28分组后筛选
2-29内连接
2-30左连接
2-31右连接
2-32合并查询
2-33标量子查询
2-34行子查询
2-35列子查询
2-36表子查询
2-37字符串函数
2-38数学函数
2-39日期和时间函数
2-40分组合并函数
2-41逻辑函数
2-42开窗函数
2-43进阶练习
2-44数据来源及业务背景
2-45表关系梳理
2-46数据导入及字段处理
2-47数据查询

3商业智能分析技能

3-1数据仓库结构说明
3-2基于数据仓库的数据处理方法
3-3数据仓库数据处理进阶
3-4数据仓库应用案例
3-5创建多维数据模型
3-6理解多维模型表连接规则
3-7业务数据分析指标介绍
3-8业务数据汇总分析进阶
3-9时间维度分析方法说明
3-10业务背景介绍
3-11理解及加工处理数据
3-12可视化界面创建方法介绍
3-13制作零售业销售情况分析仪
3-14业务背景介绍
3-15客户价值模型说明
3-16数据加工处理
3-17制作电商客户行为分析仪
3-18业务背景介绍
3-19理解餐饮业关键运营指标
3-20数据加工处理
3-21制作餐饮业日销售情况监控仪
3-22电商业务背景介绍
3-23电商流量指标体系说明
3-24数据加工处理
3-25制作电商流量分析仪
3-26业务背景介绍
3-27进销存关键指标说明
3-28数据加工处理
3-29制作经销商经营情况分析仪
3-30业务背景介绍
3-31数据说明
3-32制作车企销售情况分析仪
3-33由讲师介绍业务背景
3-34由讲师提供数据
3-35由学员独立完成业务分析仪的制作过程
3-36由学员分组发表制作成果并由讲师点评

4数据挖掘数学基础

4-1函数
4-2极限
4-3微分及应用
4-4定积分
4-5向量
4-6线性方程组
4-7线性变化与矩阵
4-8矩阵乘法
4-9行列式
4-10矩阵的秩
4-11逆矩阵
4-12点乘与内积
4-13外积
4-14特征值与特征向量
4-15集中趋势的度量
4-16离散程度的度量
4-17偏态与峰态的度量
4-18统计量概念与常用统计量
4-19抽样分布
4-20样本均值的分布与中心极限定理
4-21样本比例的抽样分布
4-22两个样本平均值之差的分布
4-23样本方差的分布
4-24假设检验的基本概念
4-25一个总体参数的检验
4-26两个总体参数的检验
4-27分类数据与X2统计量
4-28拟合优度检验
4-29列联分析:独立性检验
4-30线性关系的方向和强度
4-31协方差
4-32相关系数
4-33一元线性回归模型
4-34多元线性回归模型
4-35逻辑回归模型

5Python编程基础

5-1Python简介
5-2Python安装环境介绍
5-3Python常用IDE及Jupyter介绍
5-4Python第三方库安装
5-5编码与标识符
5-6Python保留字
5-7注释和缩进
5-8输入和输出
5-9变量及赋值
5-10数值
5-11字符串
5-12布尔值
5-13列表
5-14元组
5-15集合
5-16字典
5-17条件语句: If
5-18循环语句For和While
5-19Break语句
5-20Continue语句
5-21Pass语句
5-22错误和异常捕捉语句
5-23异常和错误处理
5-24逻辑判断函数
5-25数值运算函数
5-26序列函数
5-27类型转换函数
5-28函数定义
5-29函数参数
5-30默认参数
5-31变量作用域
5-32全局变量和局部变量
5-33匿名函数
5-34列表生成式
5-35高级函数: map、Reduce、 filter等
5-36模块概念介绍
5-37import模块导入
5-38自定义模块
5-39文件读写
5-40利用Python操作文件和目录
5-41类的定义
5-42类对象
5-43类方法
5-44Python连接数据库方法
5-45利用Python操作数据库

6Python数据清洗

6-1NumPy基本介绍
6-2NumPy基本数据结构: Ndarray
6-3数组的索引与切片
6-4数组其他常用函数与方法
6-5Pandas基本数据结构: Series与DataFrame
6-6索引、切片与过滤
6-7排序与汇总
6-8DataFrame简单处理缺失值方法
6-9数据集的合并与连接
6-10重复值的处理
6-11数据集映射转化方法
6-12异常值查找与替换
6-13排序和随机抽样
6-14DataFrame字符串常用操作
6-15DataFrame分组操作
6-16
6-17DataFrame聚合操作
6-18DataFrame透视表的创建方法
6-19数据的获取与存储
6-20数据探索
6-21数据清洗实战案例一
6-22数据清洗实战案例二

7Python数据可视化

7-1数据可视化入门
7-2常用可视化第三方库介绍: matplotlib、seaborn、PyEcharts
7-3常用可视化图形介绍,如饼图、柱图、条形图、线图散点图等
7-4图形选择
7-5Pandas绘图方法
7-6图例配置方法和常用参数
7-7颜色条配置方法和常用参数
7-8subplot多子图绘制方法
7-9文字与注释、自定义坐标轴方法
7-10Seaborn入门介绍
7-11Seaborn API介绍
7-12Seaborn绘图示例
7-13Echarts介绍
7-14PyEcharts API介绍
7-15PyEcharts绘图示例

8Python统计分析

8-1数据描述
8-2数据分布与统计信息
8-3数据角色定义
8-4大数据存储
8-5最小二乘估计
8-6线性回归与相关
8-7线性回归与方差分析
8-8数据分析流程
8-9多元线性回归的假设
8-10正态分布问题
8-11异方差问题与处理
8-12异常值问题与处理
8-13共线性问题与处理
8-14内生性问题与处理
8-15logistic回归与卡方
8-16最大似然估计
8-17logistic回归解析
8-18评分与预测
8-19分类比例平衡问题
8-20工具变量的使用
8-21哑变量处理
8-22变量筛选

9机器学习快速入门

9-1机器学习入门介绍:机器学习基本思想、常用算法分类、算法库等
9-2Python机器学习算法库Scikit-Learn入门介绍
9-3超参数与模型验证:学习曲线、网格搜索
9-4特征工程概念介绍
9-5分类特征、文本特征
9-6图像特征、特征衍生
9-7缺失值填充、特征管道
9-8KNN基本原理
9-9KNN函数详解
9-10KNN高级数据结构实现
9-11原理补充:归一化方法、学习曲线、交叉验证
9-12KNN-最近邻分类器
9-13KNN算法示例
9-14无监督学习与聚类算法
9-15聚类分析概述与簇的概念
9-16距离衡量方法
9-17聚类目标函数和质心计算方法
9-18Scikit-Learn实现K-Means及主要参数解
9-19决策树工作原理
9-20构建决策树(ID3算法构建决策树及局限性)
9-21C4.5与CART算法
9-22决策树的Scikit-Learn实现:八个参数、一个属性、四个接口解析
9-23分类模型的评估指标(混淆矩阵原理)
9-24实例:泰坦尼克号幸存者的预测
9-25过拟合与欠拟合
9-26决策树算法评价(优点与缺点)
9-27决策树在保险行业中的应用

10机器学习进阶

10-1线性回归概述
10-2多元线性回归基本原理
10-3模型参数求解方法
10-4回归类模型评价标准:精准性、拟合度
10-5多重共线性与岭回归、Lasso
10-6非线性问题及其处理方法
10-7多项式回归
10-8MSE
10-9R^2
10-10最小二乘法
10-11梯度下降
10-12名为“回归\"的分类器
10-13二元逻辑回归的损失函数
10-14逻辑回归的重要参数
10-15梯度下降求解逻辑回归最小损失函数
10-16概率分类器概述
10-17朴素贝叶斯概述
10-18不同分布下的朴素贝叶斯
10-19高斯贝叶斯下的拟合效果与运算速度
10-20多项式朴素贝叶斯及其优化
10-21AUC
10-22ROC
10-23关联规则概述:频繁项集的产生与
10-24关联发现
10-25Apriori算法原理:先验原理
10-26使用Apriori算法来发现频繁项集(生成候选项集(函数的构建与封装)、项集迭代函数)
10-27协同概率概述
10-28协同过滤算法分类
10-29基于商品的协同过滤
10-30基于协同过滤的商品个性化推荐
10-31集成算法概述Bagging Vs Boosting、集成算法的认识
10-32随机森林分类器的实现:重要参数、重要属性和接口
10-33随机森林回归器的实现:重要参数、属性与接口
10-34机器学习中调参的基本思想(泛化误差)
10-35调参应用:随机森林在乳腺癌数据上的调参
10-36MSE
10-37R^2
10-38最小二乘法
10-39梯度下降
10-40数据处理概述
10-41数据量纲处理:归一化、标准化
10-42缺失值处理
10-43分类型数据处理:数据编码与哑变量
10-44连续性数据处理:二值化与分箱
10-45特征选择:过滤法、嵌入法、包装法
10-46SVM概述: SVM工作原理
10-47SVM模型构建
10-48线性SVM:线性SVM的损失函数、函数间隔有几何间隔、SVM决策边界
10-49非线性SVM: SVC模型概述、重要参数、核函数、SVC重要参数(C、class weight)
10-50感知机
10-51多层感知机
10-52初识神经网络
10-53梯度提升树概述
10-54XGBoost选择若分类器
10-55求解目标函数
10-56参数化决策树
10-57建立目标函数与树结构的直接关系
10-58贪婪算法与求解最优树
10-59XGBoost的剪枝参数:减轻过拟合
10-60XGBoost分类中的样本不均衡问题处
10-61基于XGboost的航空预测

11评分卡案例

11-1评分卡业务逻辑介绍
11-2案例业务背景介绍
11-3基本分析工具与环境准备
11-4数据准备
11-5数据预处理
11-6数据比例调节:过度抽样
11-7构造训练集和测试集
11-8变量相关性分析
11-9数据的缺失值与异常值
11-10变量数据类型重编码
11-11Logistic模型原理回顾
11-12Logistic建模
11-13利用Logistic模型进行变量筛选
11-14分类模型评估指标回顾
11-15过度抽样调整
11-16收益矩阵
11-17模型转化评分卡
11-18Python模型部署方法
11-19构建机器学习流
11-20模型效果监测与更新

12电商零售

12-1项目商业问题简述
12-2项目策略与方法
12-3项目推荐计划
12-4项目时间规划
12-5购买倾向模型
12-6方法原理介绍
12-7目标以及数据介绍
12-8Python算法实现(Gradient Boosting)
12-9建模结果解读
12-10购买倾向模型
12-11目标以及数据介绍
12-12Python算法实现
12-13建模结果解读
12-14活动设计
12-15结果评价

13Python网络爬虫(录播)

13-1网络爬虫定义
13-2网络爬虫用途
13-3通用搜索引擎工作的原理和局限性
13-4爬虫基本原理与流程
13-5常见网络爬虫分类
13-6基于IP地址搜索策略
13-7广度优先搜索策略
13-8深度优先搜索策略
13-9最佳优先搜索策略
13-10http基本原理介绍
13-11http请求过程
13-12网页组成
13-13HTML:超文本标记语言
13-14CSS:层叠样式表
13-15网页样式
13-16JavaScript(JS)
13-17网页的结构
13-18爬虫基本流程
13-19抓取数据的数据类型解析
13-20JavaScript渲染页面
13-21cookies介绍
13-22爬虫代理
13-23Robots协议介绍
13-24爬虫攻防入门

14Tableau数据分析 (录播)

14-1Tableau产品介绍
14-2Tableau操作界面介绍
14-3Tableau常用功能介绍
14-4Tableau连接数据源方法
14-5层级与下钻
14-6排序和分组
14-7创建和使用集
14-8筛选方法:筛选栏和筛选器
14-9数据处理常用参数
14-10参考线与趋势线
14-11常用预测方法
14-12可视化基本方法论
14-13初级图表绘制方法:条形图、折线图、饼图、文字云、散点图、地图、树形图、气泡图等
14-14高级图表:子弹图、环形图、瀑布图、Bump Chart、Table Formatting
14-15使用Tableau制作仪表板
14-16逻辑运算
14-17数值运算
14-18字符串处理函数
14-19日期函数
14-20聚合函数
14-21数据背景和需求分析
14-22数据读取与预处理
14-23Top N客户汇总分析
14-24Top N客户销售额分析

15分布式集群架构

15-1大数据概念介绍
15-2Hadoop入门与分布式集群基本概念
15-3Hadoop生态和及其技术栈
15-4Linux生态介绍
15-5常用虚拟化工具介绍
15-6常用Linux操作系统
15-7Vmware与VirtualBox
15-8Ubuntu操作系统与CentOS
15-9Ubuntu安装与常用命令
15-10JDK的安装与使用
15-11Hadoop安装与使用
15-12Hadoop单机运行方法
15-13Hadoop伪分布式运行方法
15-14利用多节点安装Hadoop集群
15-15Hadoop生态其他常用组件基本介绍
15-16数据仓库Hive安装方法
15-17分布式数据库Hbase安装方法
15-18ETL工具Sqoop安装方法
15-19Scala与Spark安装方法

16Hadoop基础

16-1HDFS概念及设计原理
16-2HDFS体系结构和运行机制
16-3NameNode、DataNode、SecondaryNameNode配置文件及修改方法
16-4HDFS备份机制和文件管理机制
16-5NameNode、DataNode、SecondaryNameNode作用及运行机制
16-6HDFS的常用操作方法介绍
16-7HDFS Java API介绍
16-8HDFS Shell命令格式
16-9HDFS创建文件目录命令
16-10HDFS文件复制、重命名命令
16-11HDFS文件移动、删除命令
16-12HDFS其他常用命令
16-13YARN基本概念
16-14YARN相关进程介绍
16-15YARN核心组件及其功能
16-16YARN运行原理
16-17MapReduce概念及设计原理
16-18MapReduce运行过程类的调用过程
16-19Mapper类和Reducer类的继承机制
16-20Job生命周期
16-21MapReduce中block的调度及作业分配机制
16-22Mapreduce程序格式介绍
16-23MapReduce程序执行流程介绍
16-24MapReduce程序在浏览器中查看
16-25Mappre类和Reducer类的主要编写内容和模式
16-26Job的编写和实现
16-27MapReduce程序编写实操
16-28Jar包打包方法和集群运行

17Sqoop安装与使用

17-1Sqoop组件介绍与发展历史
17-2Sqoop组件特性及核心功能
17-3ETL基本概念
17-4Hadoop生态中的数据转化方法
17-5Linux中安装Sqoop方法
17-6Sqoop集成MySQL方法
17-7Sqoop集成Hbase方法
17-8Sqoop集成Hive方法
17-9Sqoop功能测试
17-10Sqoop导入功能介绍
17-11Sqoop数据导入import命令基本格式
17-12Sqoop数据导入import命令常用参数
17-13利用Sqoop从MySQL中导入数据至HDFS
17-14Sqoop生成相应Java代码方法codegen
17-15利用Sqoop导入数据至Hive
17-16利用Sqoop导入数据至Hbase
17-17Sqoop导出功能介绍
17-18Sqoop数据导入export命令基本格式
17-19Sqoop数据导入export命令常用参数
17-20从HDFS中导出数据到MySQL
17-21从Hive导出数据到MySQL
17-22从Hbase导出数据到MySQL

18分布式数据仓库Hbase

18-1分布式数据库和关系型数据库
18-2No-SQL数据库与面向列数据库特性讲解
18-3Hbase发展历史
18-4Hbase核心特性
18-5Hbase在Linux中的安装方法
18-6Hbase配置文件与修改方法
18-7Hbase与Zookeeper集成
18-8Hbase完全分布式安装与运行
18-9简单备份模式
18-10Hbase逻辑模型
18-11Hbase物理模型
18-12paxos算法与运行机制
18-13静态迁移与动态迁移
18-14Hbase基本操作方法
18-15Hbase Shell通用命令General
18-16表格创建命令Create
18-17常用查看命令list、describe
18-18使用put命令添加数据
18-19删除数据delete、delete all命令
18-20查看数据scan、get命令
18-21修改数据命令alter
18-22表格删除方法
18-23其他统计方法
18-24Hbase和Hive集成概述
18-25Hbase和Hive集成方法
18-26使用HQL操作Hbase中数据
18-27Hbase和Spark集成概述
18-28Hbase和Spark集成方法
18-29利用Spark编程读取Hbase中数据

19数据仓库工具Hive

19-1数据仓库诞生背景与概念介绍
19-2常用数据仓库工具介绍
19-3分布式数据仓库工具介绍
19-4Hive核心特性
19-5Hive部署与访问
19-6Hive常用元数据服务与访问接口
19-7Hive数据模型
19-8数据存储结构
19-9Hive API distinct
19-10Hive API multi insert
19-11Hive API union all
19-12Hive API union all
19-13Hive API group by&order by
19-14Hive基本数据类型
19-15Hive复杂数据类型
19-16Hive数据定义方法
19-17创建、修改和删除表方法
19-18视图和索引的创建、修改和删除
19-19表中加载数据的方法
19-20表中导出数据方法
19-21查询操作
19-22连接操作
19-23子查询
19-24数据仓库企业开发平台
19-25数据仓库模型设计
19-26自助查询系统设计
19-27宽表设计与用户画像
19-28利用Hive进行网站流量分析

20Spark基本原理与核心组件

20-1分布式计算框架介绍
20-2Spark诞生背景与发展历程
20-3Spark基本定位与核心特性
20-4Scala语言介绍:基础语法、编译环境、常用类型、声明;行、字符、二进制与文本文件的读取与写入
20-5Scala 函数:控制结构(赋值、条件、循环、输入输出)与函数(参数与过程);数组操作(定义、遍历、转换)及常用算法
20-6Scala对象操作:的类和对象构造与继承、重写、抽象、转换;类与对象中特质的属性与使用,包的使用与引入
20-7Spark运行架构
20-8Spark运行基本流程
20-9RDD设计背景与基本概念
20-10RDD特性
20-11RDD之间依赖关系
20-12RDD运行过程
20-13Spark三种部署方式
20-14Spark与Hadoop统一部署
20-15Spark结构化数据模块Spark SQL
20-16Spark机器学习算法库Spark MLlib
20-17Spark流式计算框架Spark Streaming
20-18新一代Spark流式计算框架Structured Streaming
20-19Spark图计算框架GraphX

21PySpark编程

21-1RDD创建方法
21-2RDD转换操作
21-3RDD行动操作
21-4RDD惰性机制
21-5RDD持久化操作
21-6打印元素方法
21-7键值对RDD创建方法
21-8常用键值对转换操作:reduceByKey、groupByKey、keys、values、sortByKey、mapValues、join等操作
21-9键值对RDD编程案例
21-10广播变量
21-11累加器
21-12pyspark.sql模块
21-13pyspark.streaming模块
21-14pyspark.ml模块
21-15pyspark.mllib模块
21-16pyspark.SparkConf类
21-17pyspark.SparkContext类
21-18pyspark.SparkFiles类
21-19pyspark.RDD类
21-20pyspark.Accumulator类
21-21pyspark.Broadcast类

22Spark SQL

22-1Spark SQL与shark
22-2Spark SQL基本设计结构
22-3Spark SQL高级数据结构
22-4高级数据结构DataFrame概念介绍
22-5DataFrame与RDD
22-6DataFrame创建方法
22-7DataFrame常用操作
22-8利用RDD转化生成DataFrame
22-9利用反射机制推断RDD模式方法
22-10使用编程方式定义RDD模式
22-11常用外部数据源
22-12Parquet基本介绍
22-13读写Parquet方法
22-14读取MySQL中数据方法
22-15连接Hive读写数据方法

23Spark ML

23-1机器学习入门介绍:机器学习基本思想、常用算法分类、算法库等
23-2Spark机器学习包ML和MLlib介绍
23-3特征矩阵与标签数组
23-4评估器与解释器
23-5特征工程概念介绍
23-6机器学习流概念介绍
23-7MLlib入门介绍
23-8MLlib向量的创建与使用,包括密集向量、稀疏向量、标签向量等
23-9MLlib矩阵的创建与使用,包括行矩阵、坐标矩阵、本地矩阵等
23-10MLlib基本统计方法:概括统计、相关性、抽样方法、假设检验、核密度估计等
23-11降维操作:PCA主成分分析与SVD奇异值分解
23-12线性回归分析
23-13逻辑归回
23-14决策树和随机森林
23-15支持向量机SVM
23-16ML机器学习流创建方法
23-17特征抽取、转化和选择:TF-IDF、CountVectorizer、Word2Vec
23-18快速聚类算法
23-19协同过滤算法
23-20集成算法
23-21反向传播神经网络
23-22SVM支持向量机分类和支持向量机回归

24Spark Streaming

24-1流式计算简介
24-2流式计算核心概念
24-3常用流式计算框架介绍
24-4Spark流式计算框架:Spark Streaming与Structured Streaming
24-5流式计算数据源介绍
24-6常用高级数据源
24-7分布式日志系统Flume介绍与安装
24-8Flume使用方法
24-9分布式消息系统Kafka介绍与安装
24-10Kafka使用方法
24-11Kafka和Flume集成
24-12Spark Streaming简介
24-13Spark Streaming计算框架基本架构
24-14Dstream队列流基本概念
24-15Spark Streaming与基本数据源集成:文件流、套接字流、RDD队列流
24-16Spark Streaming与高级数据源集成:Kafka、Flume
24-17Dstream转化操作与输出操作
24-18Structured Streaming简介
24-19Structured Streaming基本架构与计算流程
24-20DatazFrame创建与转换
24-21利用Structured Streaming进行流查询
24-22通过编写独立应用使用Structured Streaming

25GraphX

25-1图计算基本概念
25-2图概念
25-3图处理技术,如图数据库、图数据查询、图数据分析、图数据可视化等
25-4图计算软件
25-5属性图概念
25-6属性图实例
25-7创建属性图方法
25-8graphx类介绍
25-9使用RDD构建图
25-10查看操作列表
25-11属性操作
25-12结构操作
25-13关联操作
25-14聚合操作
25-15缓存操作
25-16PageRank算法
25-17连通分支算法
25-18三角形计算算法

26Flink流处理框架

26-1Flink的重要特点
26-2IDEA 集成开发环境
26-3Java基础及应用:基础语法、面向对象、异常处理、IO流、注解、反射等
26-4Flink部署
26-5Flink运行架构
26-6Flink 流处理API
26-7Flink中的Window
26-8时间语义与Wartermark
26-9ProcessFunction API
26-10状态编程和容错机制
26-11Table API 与SQL
26-12Flink CEP

27大数据分析案例(三选二)

27-1数据采集平台、数仓、离线\\实时分析平台设计、框架选型、搭建流程及常见问题总结
27-2数据挖掘方法论回顾
27-3CRISP-DM方法论和SEMMA方法论
27-4数据挖掘方法论在大数据分析中的实践应用方法
27-5利用HDFS和Hbase进行简单数据处理
27-6利用Sqoop完成数据ETL过程
27-7利用数据仓库工具和Spark SQL进行数据清洗
27-8利用Spark MLlib构建机器学习流进行建模分析
27-9利用PyEcharts进行结果可视化展示
27-10流量:用户画像与精细化营销
27-11产品:产品生命周期管理
27-12活动:KPI检测体系构建
27-13品牌:品类管理与多位能力模型构建
27-14客户:客户细分与用户画像
27-15产品:产品生命周期与用户关系管理
27-16营销:精准营销、网络获客、客户维护与客户生命周期管理
27-17用户离网分析
27-18客户价值评估
27-19用户细分
27-20电信反欺诈模型的构建

硬核服务

  • 朝九晚九全程跟班答疑

    助教线上服务时间由原先的上课期间答疑调整为课程持续期间答疑,包括中途休息时间;同时,每日答疑时间由原先的“朝九晚六”调整为“朝九晚九”,全面覆盖同学晚自习时间。
  • 一对一督学

    每个班级、每位同学、每月都会进行至少一次一对一辅导,询问同学学习状态、解决学员学习问题;同时,针对每个模块测试结果后10%的学员进行额外辅导,以确保学员能够跟上学习进度。
  • 定期直播串讲

    对于重难点知识和同学普遍反应的问题,助教将进行每周1-2次的晚自习串讲,串讲时常为2小时左右,且相关内容需要重新制作、有别于课程内容,帮助同学攻克重难点知识。
  • 五分钟内有问必答

    助教线上服务要求5分钟内有问必答,并能真正做到解决所有课程中遇到的问题。在原先每个班一个助教+一个班主任的配置下,调整为每个班2名助教+项目服务团队的模式,以确保快速、高质量的解决线上提问。
  • 出勤率和进度监督

    在课程持续期间,助教还需实时统计学员出勤情况,监督课堂纪律,跟进学习进度。除正常答疑外,服务团队会与班级同学保持沟通、给予正确指引,从而营造积极学习氛围。
  • 作业与测试

    在远程授课期间,每个课程会安排相关课后作业,确保同学课下能够进行适当练习,提升同学实时参与感、保证当日学习效果。除了作业,服务团队还会组织学员进行阶段性测试,以考试性质为主,主要考察学员对本阶段知识掌握程度。

来自业界的数据领袖团队

  • 曹老师

    北京大数据协会理事

    首发集团智慧交通大数据中心筹备组负责人,经管之家(原人大经济论坛)大数据培训中心负责人,统计学专业博士,研究方向为数据挖掘领域的前沿算法研究,包括随机森林算法、神经网络等内容,发表多篇论文。
  • 辛老师

    Java高级软件工程师

    Java高级培训讲师、认证高级讲师、系统架构师、SUN中国社区会员、JAVA技术专家。精通JAVA、JAVA EE6体系结构;精 通Java企业级中间件技术设计、构建以及应用部署。
  • 魏老师

    大数据架构师

    具有10年大企业项目经验,现任职于耐克体育中国有限公司,担任大数据分析职位。先后参与过《基于日月光半导体制造业大数据分析挖掘》,《E消费会员忠诚度分析》,《基于罗宾逊全球物流可视化分析》等项目。
  • 赵老师

    北京邮电大学管理科学与工程硕士

    现就职于北京电信规划设计院,从事移动、联通集团及各省分公司市场\业务\财务规划、经济评价及运营咨询。重点研究方向包括离网用户挖掘、市场细分与精准营销、移动网络价值区域分析、潜在价值客户挖掘等。
  • 吴老师

    CDA数据分析研究院技术负责人兼高级讲师

    CDA LEVEL II大数据分析师等级考试命题组组长,曾就职于电子科技大学大数据中心,从事医疗大数据分析相关工作,拥有丰富的海量数据分析经验、算法研发经验、省级数据平台搭建经验,拥有算法专利若干,主要研究方向为机器学习和深度学习。
  • 王老师

    CDA数据分析师讲师/计算机体系硕士

    精通Java编程 Python语言等。具有9年项目开发经验,多年的JAVA程序设计和操作系统教学经验,教学方式和方法新颖,深受学员的好评。独立或带团队完成互联网、电信等多个大型项目。
  • 覃老师

    机器学习工程师

    深度学习神经网络领域。多年开发研究经验,精通算法原理与编程实践。曾完成过多项图像识别,目标识别,语音识别的实际项目,经验丰富。关注深度学习领域各种开源项目,如TensorFlow,Caffe,Torch等。
  • 丁老师

    南京上度咨询数据分析总监

    现任职于南京上度市场咨询有限公司,人大经济论坛数据处理中心数据分析顾问,SAS、SPSS 软件讲师、中国学习路径图国际中心技术顾问。曾参与2012 国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核、中国卫生状况调查、江苏广电 CRM 数据挖掘等大型数据处理项目。
权威 经管之家CDA LEVEL Ⅲ数据科学家认证证书,行业顶尖人才认证,已获得IBM大数据大学,中国电信,苏宁,德勤,猎聘,CDMS等企业的认可。
专业 CDA认证是根据商业数据分析专业岗位设立的一套体系化、科学化、正规化的人才标准。全国统考、专家命题、评分公平、流程严格,更具含金量。
权益 持证人享有系列特殊权益。证书皆绑定考生真实身份,可在CDA官网查询,确保唯一性与防伪性。证书三年审核一次,保证持证人的实力与权益。

认证介绍:
CDA数据分析师认证”是一套专业化,科学化,国际化,系统化的人才考核标准,分为CDA LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ,涉及金融、电商、医疗、互联网、电信等行业大数据及数据分析从业者所需要具备的技能,符合当今全球大数据及数据分析技术潮流,为各界企业、机构提供数据分析人才参照标准。经管之家为中国区CDA数据分析师认证考试唯一主办机构,于每年6月与12月底在全国范围举办线下数据分析师考试,通过考试者可获得CDA数据分析师认证证书。
CDA持证人福利
1.可吸纳为CDA Institute、中国数据分析师(CDA)俱乐部会员,活动中具有优先报名参与权。
2.可优先获得CDA内部就业及职业发展推荐。
3.免费参与CDA举办的中国数据分析师行业峰会、大数据峰会、研讨会等各项活动,Level Ⅱ与Level III持证人享受特权位置。
4.可申请加入CDA数据分析项目组,参与项目合作(提供项目给持证人演练)。
5.CDA Level Ⅰ持证人免费享受Peixun.net会员服务6个月(价值588 RMB),Level Ⅱ与Level III持证人免费享受peixun.net会员服务1年 (价值998 RMB);
6.其他特权皆以各类活动公告为主。
进入考试报名系统
  • Q:5个月课程时间怎么安排的吗?

    A:CDA大数据就业班最新课程采用基础班+进阶课程+案例实战,每天6小时上课和2小时晚自习,赠送全套录播视频可以反复观看,学习中的疑问也有内部交流群。
  • Q:远程班是录播还是直播?

    A:远程班采取直播平台+ 线上答疑,同步现场班上课时间,错过直播学员可以观看视频。
  • Q:学员课下如何与老师进行互动?

    A:CDA大数据课程每期都会建立QQ群和微信群,工作日有老师和助教负责答疑;同时学员可以在讨论区以帖子的形式向老师提问,老师会在工作日内回复。
  • Q:如果学不会怎么办?

    A:首先,我们有一次免费学习的机会,如果还是学不会,授课老师会和学生面谈,发现问题所在,并让老师给出学习建议,查缺补漏,可以再跟着免费学一期。目前咱们还没有出现过这样的情况,对于学员来讲都是想尽快掌握技术能够运用到工作中。
  • Q:培训后负责就业吗?

    A:现场和远程学员推荐就业,我们课程设计就是以就业为导向。安排专职就业老师,从就业指导、面试模拟、毕业答辩会等全方面服务,保障学员的就业问题。

OK